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ootstrapping 1s a nonparametric approachto statistical inference that substitutes computa-

tion for more traditional distributional assumptions and asymptotic results.

Bootstrapping offers a number of advantages:

  T
h
e
e

*

a

The bootstrap is quite general, although there are some cases in whichitfails.

Because it does not require distributional assumptions (such as normally distributed

errors), the bootstrap can provide more accurate inferences when the data are not well

behaved or when the sample size is small.

e It is possible to apply the bootstrap to statistics with sampling distributions that are diffi-

cult to derive, even asymptotically. |

e It is relatively simple to apply the bootstrap to complex data collection plans (such as

many complex sample surveys).

 

21.1 Bootstrapping Basics

My principal aim is to explain how to bootstrap regression models (broadly construed to

include generalized linear models, etc.), but the topic is best introduced in a simpler context:

Suppose that we draw an independent random sample from a large population.” For concrete-

ness and simplicity, imagine that we sample four working, married couples, determining in

each case the husband’s and wife’s income, as recorded in Table 21.1. I will focus on the dif-

ference in incomes between husbands and wives, denoted as Y; for the ith couple.

Wewantto estimate the mean difference in income between husbands and wivesin the pop-

ulation. Please bear with me as I review somebasicstatistical theory: A point estimate ofthis

population mean difference jz is the sample mean,

yaX% 6-345 43975

Elementary statistical theory tells us that the standard deviation of the sampling distribution of

sample means is SD(Y) = o/,/n, whereo is the population standard deviation ofY.

 

1The term bootstrapping, coined by Efron (1979), refers to using the sample to learn aboutthe sampling distribution of

a statistic without reference to external assumptions—asin “pulling oneself up by one’s bootstraps.”

?Recall from Section 15.5 that in an independent random sample, cach element of the population can be selected more

than once. In a simple random sample, in contrast, once an element is selected into the sample, it is removed from the

population, so that sampling is done “without replacement.” When the population is very large in comparison to the

sample (say, at least 20 times as large), the distinction between independent and simple random sampling becomes

inconsequential.
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648 . Chapter 21. Bootstrapping Regression Models
 

Table 21.1 Contrived “Sample” of Four Married Couples, Showing
Husbands’ and Wives’ Incomes in Thousandsof Dollars
 

Observation Husband’s Income  Wife’s Income Difference Y;
 

| 34 - 28 6

2 24 27 —3

3 50 45 5

4 54 51 3
 

If we knew o, and if Y were normally distributed, then a 95% confidence interval for yw

would be

pu = Y+1.96

al
e

where Z.925 = 1.96 is the standard normal value with a probability of .025 to the right. If Y is

not normally distributed in the population, then this result applies asymptotically. Of course,

the asymptotics are cold comfort when n = 4.

In a real application, we do not know o. The usual estimator of o is the sample standard

deviation,

cH au

from which the standard error of the mean (i.e., the estimated standard deviation of Y) is

SE(Y) = S/,/n. If the population is normally distributed, then we can take account of the

added uncertainty associated with estimating the standard deviation of the mean by substituting

the heavier-tailed f-distribution for the normal distribution, producing the 95% confidence

interval

was S
= VE bi-1,.0257

Here, t,—1,.025 is the critical value of ¢ with n — 1 degrees of freedom anda right-tail probability

of .025.

In the present case, S = 4.031, SE(Y) = 4.031/V/4 = 2.015, and ¢3 925 = 3.182. The 95%

confidence interval for the population mean is thus .

fb = 2.75£3.182X2.015 = 2.75 46.41

or, equivalently,

— 3.66<uU<9.16

As one would expect, this confidence interval—whichis based on only four observations—is very

wide andincludes0,It is, unfortunately, hard to be sure that the population is reasonably close to

normally distributed when we have such a small sample, and so the t-interval may notbe valid.*

3To say that a confidenceinterval is “‘valid’ means that it has the stated coverage. That is, a 95% confidenceinterval

is valid if it is constructed according to a procedure that encloses the population mean in 95% of samples.

  



 

 

21.1 Bootstrapping Basics 649
 

Bootstrapping begins by using the distribution of data values in the sample (here,

Y, = 6,Y2 = —3, Y3 = 5, Y4 = 3) to estimate the distribution of Y in the population.* Thatis,

we define the random variable Y* with distribution®

y* p*(y*)

6 25
—3 25
5 25
3 25

from which

E*(Y*) =)yp") =2.75 =¥
all y*

and

V*(Y*) = Sop -B(Y)'P0")

= 12.187 =29 "=19
4 n

Thus, the expectation of Y* is just the sample mean of Y, and the variance of Y* is [except for

the factor (n — 1)/n, whichistrivial in larger samples] the sample variance of Y.

Wenext mimic sampling from the original population by treating the sample as if it were

the population, enumerating all possible samples of size n = 4 from the probability distribution

of Y*. In the present case, each bootstrap sample selects four values with replacement from

amongthe four values of the original sample. There are, therefore, 44 — 256 different bootstrap

samples,° each selected with probability 1/256. A few of the 256 samples are shown in

Table 21.2. Because the four observations in each bootstrap sample are chosen with replace-

ment, particular bootstrap samples usually have repeated observations from the original sample.

Indeed, of the illustrative bootstrap samples shown in Table 21.2, only sample 100 does not

haverepeated observations.

Let us denote the bth bootstrap sample’ as y; = [Yi,, Yi, Ys. YJ’, or more generally,
vi = (Yh. Yi,..., Yp|, where b = 1, 2,...,n". For each such bootstrap sample, we calculate

the mean,

“An alternative would be to resample from a distribution given by a nonparametric density estimate (see, e.g.,

Silverman & Young, 1987). Typically, however, little if anything is gained by using a more complex estimate of the
population distribution. Moreover, the simpler method explained here generalizes more readily to more complex situa-

tions in which the population is multivariate or not simply characterized by a distribution.
>Theasterisks on p*(-), E*, and V* remind us that this probability distribution, expectation, and variance are condi-

tional on the specific sample in hand. Were weto select another sample, the values of Yi, Y2, Y3, and Y4 would change

and—along with them—the probability distribution of Y*, its expectation, and variance.
Manyofthe 256 samples have the same elements but in different order—for example, [6, 3, 5, 3] and [3, 5, 6, 3]. We

could enumerate the unique samples without respect to order and find the probability of each, but it is simpler to work

with the 256 orderings because each ordering has equal probability.

7Jf vector notation is unfamiliar, then think of y; simply asa list of the bootstrap observations Y}, for sample D.

 

 

 

 



 

 

650 Chapter 21. Bootstrapping Regression Models
 

Table 21.2 A Few of the 256 Bootstrap Samples for
the Data Set [6, —3, 5, 3], and the

Corresponding Bootstrap Means, Y;,
 

Bootstrap Sample
—>*

 

 

 

b Yo. Yoo Yos Yea Yb

1 6 ¢ 6 6. 6.00
2 6 66 6 -3 3.75
3 6 6 6 5 5.75

100 3 «5 6 3. 275
101 5 6 1.25

255 3 3 3 5 3.50
256 3 3 3 3. 3.00

Y=2.75
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Figure 21.1. Graph of the 256 bootstrap means from the sample [6, —3, 5, 3]. The broken vertical

line gives the meanof the original sample, Y = 2.75, which is also the mean of the
256 bootstrap means.

n oksot Daini VpY,=e
n

The sampling distribution of the 256 bootstrap means is shownin Figure 21.1.

The mean of the 256 bootstrap sample means is just the original sample mean, Y = 2.75.
The standard deviation of the bootstrap meansis

n * =) 2
—x* , — Y —_ Y

SD*(Y ) _ b=1 “ )

= 1.745  
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Wedivide here by n” rather than by n” — 1 because the distribution of the n” = 256 bootstrap

sample means (Figure 21.1) is known, not estimated. The standard deviation of the bootstrap

meansis nearly equal to the usual standard error of the sample mean;the slight slippage is due

to the factor ,\/n/(n — 1), whichis typically negligible (though not when n = 4):°

— n —i
E(Y) =,/ D*(¥SE(Y) rh (Y)

4
2.015 = y[sx1.745

This precise relationship between the usual formula for the standard error and the bootstrap

standard deviation is peculiar to linear statistics (1.e., linear functions of the data) like the

mean. For the mean, then, the bootstrap standard deviation is just a more complicated way to

calculate what we already know, but

 

© bootstrapping might still provide more accurate confidence intervals, as I will explain

presently, and

© bootstrapping can be applied to nonlinearstatistics for which we do not have standard-

error formulas or for which only asymptotic standard errors are available.

Bootstrapping exploits the following central analogy:

 

The population is to the sample

as

the sampleis to the bootstrap samples.   
Consequently,

the bootstrap observations Y;. are analogousto the original observationsY;,

the bootstrap mean Y;, is analogous to the mean ofthe original sample Y,

the mean ofthe original sample Y is analogous to the (unknown) population mean 2, and

the distribution of the bootstrap sample means is analogous to the (unknown) sampling

distribution ofmeans for samples of size n drawn from theoriginal population.
 

   
8See Exercise 21.1.
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Table 21.3. Contrived “Sample” of 10 Married Couples, Showing
Husbands’ and Wives’ Incomesin Thousandsof Dollars
 

 

Difference

Observation Husband's Income Wife’s Income Y;

1 34 28 6

2 24 27 —3

3 50 A5 5

4 54 51 3

5 34 28 6

6 29 19 10

7 31 20 11

8 32 40 —8

9 AO 33 7

10 34 25 9
 

The bootstrapping calculations that we have undertaken thus far depend on very small sample

size, because the number of bootstrap samples (n”) quickly becomes unmanageable: Even for

samples as small as n = 10, it is impractical to enumerate all the 10!° = 10 billion bootstrap

samples. Consider the ‘‘data’’? shown in Table 21.3, an extension of the previous example. The

mean and standard deviation of the differences in income Y are Y = 4.6 and S = 5.948. Thus,

the standard error of the sample mean is SE(Y) = 5.948/./10 = 1.881.

Although we cannot(as a practical matter) enumerate al/ the 10!° bootstrap samples, it is

easy to draw at random a large number of bootstrap samples. To estimate the standard devia-

tion of a statistic (here, the mean)—thatis, to get a bootstrap standard error—100 or 200 boot-

strap samples should be more than sufficient. To find a confidence interval, we will need a

larger numberofbootstrap samples, say 1000 or 2000.?

A practical bootstrapping procedure, therefore, is as follows:

1. Let 7 denote the number of bootstrap replications—that is, the number of bootstrap

samples to be selected.

2. For each bootstrap sample b = 1,...,7, randomly draw n observations Y;,, Yj. ..., Ys,

with replacement from among the n sample values, and calculate the bootstrap sample

mean,

n *
y' = dint Voi

n

Results presented by Efron and Tibshirani (1993, chap. 19) suggest that basing bootstrap confidence intervals

on 1000 bootstrap samples generally provides accurate results, and using 2000 bootstrap replications should be very
safe.
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Table 21.4 A Few of the r = 2000 Bootstrap Samples Drawn From the Data Set
[6, —3, 5, 3, 6, 10, 11, —8, 7, 9] and the Corresponding Bootstrap

 

 

Means, Y;,

b Yb Yon Yb3. YBa YES Yb6. Ybr~— Ys. OYB9 Ybn0 Yb

1 6 10 6 5 —8 9 9 6 11 3 5.7

2 9 9 7 7 3 3 —3 —3 -8 6 3.0

3 9 —3 6 5 10 6 10 10 10 6 6.9

1999 6 9 6 3 11 6 6 7 3 9 6.6

2000 7 6 7 3 10 6 9 3 10 6 6.7
 

0

 

where

y= Pati
Yr

is the mean of the bootstrap means. We can, if we wish, “‘correct’? SE* (Y") for degrees

of freedom, multiplying by ,/n/(n — 1).

Toillustrate this procedure, I drew r = 2000 bootstrap samples, each of size n = 10, from the

*‘data”’ given in Table 21.3, calculating the mean, Yh for each sample. A few of the 2000

bootstrap replications are shown in Table 21.4, and the distribution of bootstrap means is

graphed in Figure 21.2.
Weknow from statistical theory that were we to enumerate all the 10'° bootstrap samples

(or, alternatively, to sample infinitely from the population of bootstrap samples), the average

bootstrap mean would be E*(Y') = Y = 4.6, and the standard deviation of the bootstrap means

would be

SE*(Y') = SE(Y)4/ a = 1.8814/75 = 1.784

For the 2000 bootstrap samples that I selected, Y = 4.693 and SE(Y") = 1.750—both quite

close to the theoretical values.

The bootstrapping procedure described in this section can be generalized to derive the

empirical sampling distribution for an estimator 6 ofthe parameter 0:

 

10Tt is important to distinguish between the “ideal” bootstrap estimate of the standard deviation of the mean, SD* (Y’),

whichis based on ail n” bootstrap samples, and the estimate of this quantity, SE*(Y), which is based on r randomly

selected bootstrap samples. By making r large enough, we seek to ensure that SE*(Y’) is close to SD*(Y). Even

SD*(Y') = SE(Y) is an imperfect estimate ofthe true standard deviation of the sample mean SD(Y), however, because

it is based on a particular sample ofsize n drawn from theoriginal population.
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Figure 21.2 Histogram of r = 2000 bootstrap means, produced by resampling from the “sam-
ple” [6, —3, 5, 3, 6, 10, 11, —8, 7, 9]. The heavier broken vertical line gives the sam-

ple mean, Y = 4.6; the lighter broken vertical lines give the boundaries of the 95%
percentile confidence interval for the population mean yz based on the 2000 boot-
strap samples. The procedure for constructing this confidence interval is described in
the next section.

1. Specify the data collection scheme S that gives rise to the observed sample when

applied to the population:'!

S(Population) = Sample

The estimator 6 is some function S(-) of the observed sample. In the preceding example,

the data collection procedure is independent random sampling from a large population.

2. Using the observed sample data as a “‘stand-in”’ for the population, replicate the data

collection procedure, producing r bootstrap samples:

= Bootstrap sample,

=> Bootstrap sample
S(Sample) ,

=> Bootstrap sample,

3. For each bootstrap sample, calculate the estimate 6% = S(Bootstrap sample;).

4. Use the distribution of the On to estimate properties of the sampling distribution of 8.

For example, the bootstrap standard error of 6 is SE* (6*) (i.e., the standard deviation of

the r bootstrap replications 6%):

"The “population” can be real—the population of working married couples—or hypothetical—the population of con-

ceivable replications of an experiment. What is important in the present context is that the sampling procedure can be
described concretely.
'2We may want to apply the correction factor ,/n/(n — 1).  
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n~ —x 2

* Ax = pe 6; ~ 0

where

6 = = o;,

r

21.2 Bootstrap Confidence Intervals
 

21.2.1 Normal-Theory Intervals

Most statistics, including sample means, are asymptotically normally distributed; in large

samples, we can therefore use the bootstrap standard error, along with the normal distribution,

to produce a 100(1 — a)% confidence interval for 6 based on the estimator 0:

9 = 6 +2,/2SE*(6*) (21.1)

In Equation 21.1, z,/2 is the standard normal value with probability a/2 to the right. This

approach will work well if the bootstrap sampling distribution of the estimator is approximately

normal, and so it is advisable to examine a normal quantile-comparison plot of the bootstrap

distribution.

There is no advantage to calculating normal-theory bootstrap confidence intervals for linear

Statistics like the mean, because in this case, the ideal bootstrap standard deviation of the statis-

tic and the standard error based directly on the sample coincide. Using bootstrap resampling in

this setting just makes for extra work and introduces an additional small random component

into standarderrors.

 

 

  

 

 

21.2.2 Percentile Intervals

Another very simple approachis to use the quantiles of the bootstrap sampling distribution of

the estimator to establish the end points of a confidence interval nonparametrically. Let 6%) rep-

resent the ordered bootstrap estimates, and suppose that we wantto construct a (100 — a)% con-

fidence interval. If the number of bootstrap replications r is large (as it should be to construct a

  

 

 



 

 
 

656 Chapter 21. Bootstrapping Regression Models
 

percentile interval), then the a/2 and 1—a/2 quantiles of 6; are approximately 6ower) and

Orappet)> where lower = ra/2 and upper = r(1 — a/2). If lower and upper are not integers, then

wecan interpolate between adjacent ordered values Gi,») or roundoff to the nearest integer.

 

 

   
A 95% confidenceinterval for the r = 2000 resampled means in Figure 21.2, for example, is

constructed as follows:

lower = 2000(.05/2) = 50

upper = 2000(1 — .05/2) = 1950

¥(1950) = 7.8

0.7<U<7.8

The endpoints of this interval are marked in Figure 21.2. Because of the skew of the bootstrap

distribution, the percentile interval is not quite symmetric around Y = 4.6. By way of compari-

son, the standard t-interval for the mean of the original sample of 10 observations is

be = Yt, osSE(Y)

= 4.642.262 x 1.881

= 4.644.255

0.345 << 8.855

In this case, the standard interval is a bit wider than the percentile interval, especially at the

top.

21.2.3 Improved Bootstrap Intervals

I will briefly describe an adjustment to percentile intervals that improves their accuracy.'?

Asbefore, we wantto produce a 100(1 — a)% confidence interval for 9 having computed the
sample estimate 6 and bootstrap replicates OF; b=1,...,r. We require z,/., the unit-normal
value with probability a/2 to the right, and two ‘ ‘comection factors,’ Z and A, defined in the
following manner:

'3Theinterval described here is called a “‘bias-corrected, accelerated’’ (or BC,) percentile interval. Details can be found
in Efron and Tibshirani (1993, chap. 14); also see Stine (1990) for a discussion of different procedures for constructing
bootstrap confidence intervals.
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e Calculate

r ~ ~~.

it (65 <9)
Z=o1|=)-

where @7!(-) is the inverse of the standard-normal distribution function (i.e., the

standard-normal quantile function), and #(6%,< 6) /r is the proportion of bootstrap repli-

cates below the estimate @. If the bootstrap sampling distribution is symmetric and if 6

is unbiased, then this proportion will be close to .5, and the “‘correction factor’ Z will

be close to 0.

e Let 6,represent the value of 6 produced when the ith observation is deleted from the

sample;'* there are n of these quantities. Let 6 represent the average ofthe 6i); thatis,

0= 77, 6i)/n. Then calculate

3

dort (8 — 6(-»)
_ 3/2

6/1 @- G9)|

With the correction factors Z and A in hand, compute

A= (21.2)

A, =0|Z4-22 |
1 —A(Z — Zq/2)

Z+Ze/2 |

A, =O |Z +——__““+
a 1 — A(Z + 24/2)

where ®(-) is the standard-normal cumulative distribution function. When the correction

factors Z and A are both 0, 4; = ®(—z,/2) = a/2, and Az = O(z,/2) = 1 — a/2. The

values A; and A, are used to locate the endpoints of the corrected percentile confidence

interval. In particular, the corrected intervalis

rower) <6< Owpper*)

where lower* = rA; and upper* = rA> (rounding or interpolating as required).

 

  

 

   
 

Applying this procedure to the “data” in Table 21.3, we have Z95/2 = 1.96 for a 95%

confidence interval. There are 926 bootstrapped means below Y= 4.6, and so

Z = ©'(926/2000) = —0.09288. The Y(-y are 4.444, 5.444,...,4.111; the mean ofthese

The 0-4 are called the jackknife values ofthestatistic 0. The jackknife values can also be used as an alternativeto

the bootstrap to find a nonparametric confidenceinterval for 9. See Exercise 21.2.
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values is Y = Y = 4.6,'° and (from Equation 21.2) A = —0.05630. Using the correction fac-

tors z and A,

 

—0.09288 — 1.96
Ay = 0{ ~0.09288 + 0.07288 \1 — [—.05630(—0.09288 — 1.96)]

= @(—2.414) = 0.007889

 

—0.09288 1.96
A, = |—0.09288 + 0.09288 + \1 — [—.05630(—0.09288 + 1.96)]

= (1.597) = 0.9449

Multiplying by r, we have 2000 x .0.007889 = 16 and 2000 x .0.9449 = 1890, from which

Yi) <<Y(1890) (21.3)
-0.4<<7.3

Unlike the other confidence intervals that we have calculated for the ‘‘sample”’ of 10 differ-

ences in income between husbandsand wives, the interval given in Equation 21.3 includes0.

21.3 Bootstrapping Regression Models
 

The procedures of the previous section can be easily extended to regression models. The most

straightforward approach is to collect the response-variable value and regressors for each

observation,

Z,; = [Y;,Xin, tee Xit]|

Then the observations z}, z,,...,Z, can be resampled, and the regression estimator computed

for each of the resulting bootstrap samples, z;', Zjo,..-,Z;,. producing r sets of bootstrap

regression coefficients, b; = [4;, By,,... By’. The methods of the previous section can be

applied to compute standard errors or confidenceintervals for the regression estimates.

Directly resampling the observations z, implicitly treats the regressors X|,...,X; as random

rather than fixed. We may wantto treat the Xsas fixed (if, e.g., the data derive from an experi-

mental design). In the case of linear regression, for example,

1. Estimate the regression coefficients A, B,,...,B, for the original sample, and calculate

the fitted value and residual for each observation:

¥;=A+ Bix+--+ + Bex

E,=¥;-Y;

2. Select bootstrap samples of the residuals, e} = [Ej,, Ej,,...,E%,|', and from these, cal-

culate bootstrapped Y values, yj = [Y},, Yyo,---, ¥fJ', where Yi = ¥; + Epi

3. Regress the bootstrapped Y values on the fixed X-values to obtain bootstrap regression

coefficients.

The average of the jackknifed estimates is not, in general, the same as the estimate calculated for the full sample, but
this is the case for the jackknifed sample means. See Exercise 21.2.
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*If, for example, estimates are calculated by least-squares regression, then

by = (X’X)"'X’ys for b = 1,...,r.
4. The resampled b} = [4}, Bj,,...,Bj,|’ can be used in the usual manner to construct

bootstrap standard errors and confidenceintervals for the regression coefficients.

Bootstrapping with fixed X draws an analogy between the fitted value Y in the sample and the

conditional expectation of Y in the population, as well as between the residual F in the sample

andtheerror ¢ in the population. Although no assumption is made about the shape of the error

distribution, the bootstrapping procedure, by constructing the Y;. according to the linear model,

implicitly assumesthat the functional form of the modelis correct.

Furthermore, by resampling residuals and randomly reattaching them to fitted values,

the procedure implicitly assumes that the errors are identically distributed. If, for example, the

true errors have nonconstant variance, then this property will not be reflected in the resampled

residuals. Likewise, the unique impact of a high-leverage outlier will be lost to the

resampling. '°

 

 
 

  

   

strapsampl
e

‘Tegression   
 

To illustrate bootstrapping regression coefficients, I will use Duncan’s regression of occupa-

tional prestige on the income and educational levels of 45 U.S. occupations.'’ The Huber M

estimator applied to Duncan’s regression produces the following fit, with asymptotic standard

errors shown in parentheses beneath each coefficient: !*

Prestige = —7.289 + 0.7104 Income + 0.4819 Education
(3.588) (0.1005) (0.0825)

Using random-X resampling, I drew r = 2000 bootstrap samples, calculating the Huber estima-

tor for each bootstrap sample. The results of this computationally intensive procedure are sum-

marized in Table 21.5. The distributions of the bootstrapped regression coefficients for income

andeducation are graphed in Figure 21.3(a) and (b), along with the percentile confidenceinter-

vals for these coefficients. Figure 21.3(c) showsa scatterplot of the bootstrapped coefficients

16Forthese reasons, random-X resampling may bepreferable even if the X-values are best conceived as fixed. See

Exercise 21.3,

17These data were discussed in Chapter 19 on robust regression andat several other points in this text.
18estimation is a method of robust regression described in Section 19.1.
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Table 21.5 Statistics for r= 2000 Bootstrapped Huber Regressions Applied to Duncan’s
Occupational Prestige Data
 

 

 

Coefficient

Constant Income Education

Average bootstrap estimate —7.001 0.6903 0.4918

Bootstrap standard error 3.165 0.1798 0.1417

Asymptotic standard error 3.588 0.1005 0.0825
Normal-theory interval (—13.423,—1.018) (0.3603,1.0650) (0.2013,0.7569)

Percentile interval (—13.150,—0.577) (0.3205,1.0331) (0.2030,0.7852)

Adjusted percentile interval (—12.935,—0.361) (0.2421,0.9575) (0.2511,0.8356)
 

NOTES: Three bootstrap confidence intervals are shown for each coefficient. Asymptotic standard errors are

also shown for comparison.

for income and education, which gives a sense of the covariation of the two estimates; it is

clear that the income and education coefficients are strongly negatively correlated.’?

The bootstrap standard errors of the income and education coefficients are much larger than

the asymptotic standard errors, underscoring the inadequacyofthe latter in small samples. The

simple normal-theory confidence intervals based on the bootstrap standard errors (and formed

as the estimated coefficients +1.96 standard errors) are reasonably similar to the percentile

intervals for the income and education coefficients; the percentile intervals differ slightly from

the adjusted percentile intervals. Comparing the average bootstrap coefficients 4, B;, and B,

with the corresponding estimates 4, B), and By suggests that thereis little, if any, bias in the

Huberestimates.”°

21.4 Bootstrap Hypothesis Tests*
 

In addition to providing standard errors and confidence intervals, the bootstrap can also be used

to test statistical hypotheses. The application of the bootstrap to hypothesis testing is more or

less obvious for individual coefficients because a bootstrap confidence interval can be used to

test the hypothesis that the corresponding parameter is equal to any specific value (typically 0

for a regression coefficient).

More generally, let T = t(z) represent a test statistic, written as a function of the sample z.

The contents of z vary by context. In regression analysis, for example, z is the nk + 1 matrix

ly, X] containing the response variable and the regressors.

For concreteness, suppose that T is the Wald-like test statistic for the omnibus null hypoth-

esis Hp: Bj =--- = 6, = in a robust regression, calculated using the estimated asymptotic

covariance matrix for the regression coefficients. That is, let Vj; contain the rows and
(kxk)

The negative correlation of the coefficients reflects the positive correlation between income and education (see

Section 9.4.4), The hint of bimodality in the distribution of the income coefficient suggests the possible presence of
influential observations. See the discussion of Duncan’s regression in Section 4.6.

*°For the use ofthe bootstrap to estimate bias, see Exercise 21.4.
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Figure 21.3. Panels (a) and (b) show histograms and kernel density estimates for the r = 2000
bootstrap replicates of the income and education coefficients in Duncan’s occupa-

tional prestige regression. The regression model wasfit by M estimation using the

Huber weight function. Panel (c) showsa scatterplot of the income and education

coefficients for the 2000 bootstrap samples.

columnsofthe estimated asymptotic covariance matrix V(b) that pertain to the & slope coeffi-

cients b; = [B,,...,B;]’. We can write the null hypothesis as Ho: (3, = 0. Thenthetest statis-

tic 1s | |
—IT=b;,Vi, bi

Wecould compare the obtained valueofthis statistic to the quantiles of x7, but we are loath to

do so because we do nottrust the asymptotics. We can, instead, construct the sampling distri-

bution ofthe test statistic nonparametrically, using the bootstrap. |

Let T; = t(z;) represent the test statistic calculated for the bth bootstrap sample, z;. We have

to be careful to draw a proper analogy here: Because the original-sample estimates play the role

of the regression parameters in the bootstrap “population” (i.e., the original sample), the
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bootstrap analog of the null hypothesis—to be used with each bootstrap sample—is

Ho: B; = Bi,..., 8, = Bg. The bootstrappedteststatistic is, therefore,

7-1
T, = (b;, ~ bi) V511 (Dp) — bi)

Having obtained r bootstrap replications of the test statistic, the bootstrap estimate of the

p-value for Ho is simply” :

ax #ha (Tf 2T)
P SSse

Note that for this chi-square-like test, the p-value is entirely from the upper tail of the distribu-

tion of the bootstrappedtest statistics.

  

     

 

hi-square-liketest 

 
  

21.5 Bootstrapping Complex Sampling Designs

One of the great virtues of the bootstrap is that it can be applied in a natural manner to more

complex sampling designs.”* If, for example, the population is divided into S strata, with n,

observations drawn from stratum s, then bootstrap samples can be constructed by resampling

ns observations with replacement from the sth stratum. Likewise, if observations are drawn into

the sample in clusters rather than individually, then the bootstrap should resample clusters

rather than individuals. We can still calculate estimates and test statistics in the usual manner

using the bootstrap to assess sampling variation in place of the standard formulas, which are

appropriate for independent random samples but not for complex survey samples.

When different observations are selected for the sample with unequal probabilities, it is com-

mon to take accountof this fact by differentially weighting the observations in inverse propor-

tion to their probability of selection.** Thus, for example,in calculating the (weighted) sample

mean of a variable Y, we take

and to calculate the (weighted) correlation ofX and Y, we take

*!There is a subtle point here: We use the sample estimate b, in place of the hypothesized parameter Bo to calculate

the bootstrappedtest statistic 7} regardless of the hypothesis that we are testing—because in the central bootstrap ana-

logy b, stands in for , (and the bootstrapped sampling distribution of the test statistic is computed under the assump-

tion that the hypothesis is true). See Exercise 21.5 for an application ofthis test to Duncan’s regression.

?2Analytic methodsforstatistical inference in complex surveys are described briefly in Section 15.5.

*3These ‘case weights” are to be distinguished from the variance weights used in weighted least-squares regression
(see Section 12.2.2), Survey case weights are described in Section 15.5.
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0) > wi(X; — X)(Y; — Y)
ty 2 2JSw—F)wih - P

Otherstatistical formulas can be adjusted analogously.”

The case weights are often scaled so that }* w; =n, but simply incorporating the weights in

the usual formulas for standard errors does not produce correct results. Once more, the boot-

strap provides a straightforward solution: Draw bootstrap samples in which the probability of

inclusion is proportional to the probability of inclusion in the original sample, and calculate

bootstrap replicates of the statistics of interest using the case weights.

The essential “trick” of using the bootstrap in these (and other) instances is to resample

from the data in the same wayas the original sample was drawn from the population. Statistics

are calculated for each bootstrap replication in the same mannerasfor the original sample.

  

 

 

  

    
Social scientists frequently analyze data from complex sampling designs as if they originate

from independent random samples (even though there are often nonnegligible dependencies

amongthe observations) or employ ad hoc adjustments (e.g., by weighting). A tacit defense of

commonpractice is that to take account of the dependencies in complex sampling designsis

too difficult. The bootstrap provides a simple solution.”°

21.6 Concluding Remarks
 

If the bootstrap is so simple and of such broad application, why isn’t it used more in the social

sciences? Beyondthe problem of lack of familiarity (which surely can be remedied), there are,

I believe, three serious obstacles to increased use of the bootstrap:

1. Common practice—such as relying on asymptotic results in small samples or treating

dependent data as if they were independent—usually understates sampling variation

and makes results look stronger than they really are. Researchers are understandably

reluctant to report honest standard errors when the usual calculations indicate greater

precision. It is best, however, not to fool yourself, regardless of what you think about

fooling others.

2. Although the conceptual basis of the bootstrap is intuitively simple and although the

calculations are straightforward, to apply the bootstrap, it is necessary to write or find

suitable statistical software. There is some bootstrapping software available, but the

nature of the bootstrap—which adapts resampling to the data collection plan and

24See Exercise 21.6.
25Alternatively, we can use sampling-variance estimates that are appropriate to complex survey samples, as described

in Section 15.5,
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statistics employed in an investigation—apparently precludes full generality and makes

it difficult to use traditional statistical computer packages. After all, researchers are not

tediously going to draw 2000 samples from their data unless a computer program can

fully automate the process. This impediment is much less acute in programmablestatis-

tical computing environments.”°

Even with good software, the bootstrap is computationally intensive. This barrier to

bootstrapping is more apparent than real, however. Computational speed is central to

the exploratory stages of data analysis: When the outcome of one of many small steps

immediately affects the next, rapid results are important. This is why a responsive com-

puting environmentis especially useful for regression diagnostics, for example. It is not

nearly as important to calculate standard errors and p-values quickly. With powerful,

yet relatively inexpensive, desktop computers, there is nothing to preclude the machine

from cranking away unattended for a few hours (although that is rarely necessary—a

few minutes is more typical). The time and effort involved in a bootstrap calculation

are usually small compared with the totality of a research investigation—and are a small

price to pay for accurate andrealistic inference.

Exercises
 

Please find data analysis exercises and data sets for this chapter on the website for the book.

Exercise 21.1. *Show that the mean of the n” bootstrap meansis the sample mean

no

gr(y) =2ats 7
ne

and that the standard deviation (standard error) of the bootstrap meansis

s m (vi -YVy sSE*(Y") = b=1 “1 ) _— a 

 

where S = Vyen i - Y)/(n — 1) is the sample standard deviation. (Hint: Exploit the fact

that the meanis a linear function of the observations.)

Exercise 21.2. The jackknife: The “‘jackknife’’ (suggested for estimation of standard errors by

Tukey, 1958) is an alternative to the bootstrap that requires less computation, but that often

does not perform as well and is not quite as general. Efron and Tibshirani (1993, chap. 11)

show that the jackknife is an approximation to the bootstrap. Here is a brief description of the

jackknife for the estimator 6 of a parameter 6:

I, Divide the sample into m independent groups. In most instances (unless the sample size

is very large), we take m = n, in which case each observation constitutes a “‘group.”’ If

the data originate from a cluster sample, then the observations in a cluster should be
kept together.

See, for example, the bootstrapping software for the S and statistical computing environments described by Efron
and Tibshirani (1993, appendix) and by Davison and Hinkley (1997, chap. 11). General bootstrapping facilities are also
provided in the Stata programming environment.
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Be Recalculate the estimator omitting the jth group, 7 = 1,...,m, denoting the resulting

value of the estimator as 6). The pseudo-value associated with the jth group is

defined as 6 =m — (m— 16.

The averageof the pseudo-values, 6* = (ja 6°) /m,is the jackknifed estimate of 0. A

jackknifed 100(1 — a)% confidence interval for 6 is given by

vn

where ty/2m—1 is the critical value of ¢ with probability a/2 to the right for m— 1

6= 6" + ta/2m—1

 

degrees of freedom, and S* = Vini (87 6y/(m — 1) is the standard deviation of

the pseudo-values.

(a) *Show that when the jackknife procedure is applied to the mean with m = n, the

pseudo-values are just the original observations, 6% = Y;; the jackknifed estimate

6" is, therefore, the sample mean Y; and the jackknifed confidence interval is the

same as the usual ¢ confidenceinterval.

(b) Demonstrate the results in part (a) numerically for the contrived “data” in

Table 21.3. (These results are peculiar to linear statistics like the mean.)

(c) Find jackknifed confidence intervals for the Huber M estimator of Duncan’s

regression of occupational prestige on income and education. Compare these inter-

vals with the bootstrap and normal-theory intervals given in Table 21.5.

Exercise 21.3. Random versus fixed resamplingin regression:

(a)

(b)

(c)

Recall (from Chapter 2) Davis’s data on measured and reported weight for 101 women

engaged in regular exercise. Bootstrap the least-squares regression of reported weight

on measured weight, drawing r = 1000 bootstrap samples using (1) random-X resam-

pling and (2) fixed-X resampling. In each case, plot a histogram (and, if you wish, a

density estimate) of the 1000 bootstrap slopes, and calculate the bootstrap estimate of

standard error for the slope. How does the influential outlier in this regression affect

random resampling? How doesit affect fixed resampling?

Randomly construct a data set of 100 observations according to the regression model

Y; = 5+ 2x;+6;, where x; = 1,2,..., 100, and the errors are independent (but seri-

ously heteroscedastic), with e; ~ N(0,x?). As in (a), bootstrap the least-squares regres-

sion of Y on x, using (1) random resampling and (2) fixed resampling. In each case,

plot the bootstrap distribution of the slope coefficient, and calculate the bootstrap esti-

mate of standard error for this coefficient. Compare the results for random and fixed

resampling. For a few of the bootstrap samples, plot the least-squares residuals against

the fitted values. How dotheseplots differ for fixed versus random resampling?

Why might random resampling be preferred in these contexts, even if (as is not the

case for Davis’s data) the X-values are best conceived as fixed?

Exercise 21 4. Bootstrap estimates of bias: The bootstrap can be used to estimate the bias of

an estimator 6 of a parameter 6, simply by comparing the mean ofthe bootstrap distribution 0

(whichstands in for the expectation of the estimator) with the sample estimate 0 (which stands

  
 



 

 

666 Chapter 21. Bootstrapping Regression Models
 

in for the parameter); that is, bias = 6° — 6. (Further discussion and more sophisticated meth-

ods are described in Efron & Tibshirani, 1993, chap. 10.) Employ this approach to estimate the

bias of the maximum-likelihood estimator of the variance, ¢? = )> (Y; — Y)*/n, for a sample
of n = 10 observations drawn from the normaldistribution N(0, 100). Use r = 500 bootstrap

replications. How close is the bootstrap bias estimate to the theoretical value

—o?/n = —100/10 = —10?

Exercise 21.5. *Test the omnibus null hypothesis Ho: 6; = B, = 0 for the Huber M estimator

in Duncan’s regression of occupational prestige on income and education.

(a) Base the test on the estimated asymptotic covariance matrix of the coefficients.

(b) Use the bootstrap approach described in Section 21.4.

Exercise 21.6. Case weights:

(a) *Show how case weights can be used to ‘“‘adjust’’ the usual formulas for the least-

squares coefficients and their covariance matrix. How do these case-weighted formulas

compare with those for weighted-least-squares regression (discussed in Section

12.2.2.)?

(b) Using data from a sample survey that employed disproportional sampling and for

which case weights are supplied, estimate a least-squares regression (1) ignoring the

case weights, (2) using the case weights to estimate both the regression coefficients

and their standard errors (rescaling the case weights, if necessary, so that they sum to

the sample size), and (3) using the case weights but estimating coefficient standard

errors with the bootstrap. Compare the estimates and standard errors obtained in (1),

(2), and (3).

Exercise 21.7. *Bootstrapping time-series regression: Bootstrapping can be adapted to time-

series regression but, as in the case of fixed-X resampling, the procedure makes strong use of

the model fit to the data—in particular, the manner in which serial dependencyin the data is

modeled. Suppose that the errors in the linear model y = XG + « follow first-order autore-

gressive process (see Chapter 16), ¢; = pe;_; + v;; the v; are independently and identically dis-

tributed with 0 expectations and commonvariance o2. Suppose further that we use the method

of maximum likelihood to obtain estimates p and B. From the residuals e = y — XB, we can

estimate v; as V; = E; — pE,;-; for i= 2,...,n; by convention, we take V; = E,. Then, for

each bootstrap replication, we sample n-values with replacement from the V;; call them V;,,

Vir +++1 Voq- Using these values, we construct residuals E;, = V;, and Ey, = pE;;_, + V5; for

i=2,...,n; and from these residuals and the original fitted values Y; = x,G, we construct

bootstrapped Y-values, Y;; = Y; + E;;,. The Y;; are used along with the original x; to obtain

bootstrap replicates @, of the ML coefficient estimates. (Why are the x’ treated as fixed?)

Employ this procedure to compute standard errors of the coefficient estimates in the time-series

regression for the Canadian women’s crime rate data (discussed in Chapter 16), using an

AR(1) process for the errors. Compare the bootstrap standard errors with the usual asymptotic

standard errors. Which standard errors do you prefer? Why? Then describe a bootstrap proce-

dure for a time-series regression model with AR(2) errors, and apply this procedure to the

Canadian women’s crime rate regression.
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Summary

 

 

Bootstrapping is a broadly applicable, nonparametric approach to statistical inference

that substitutes intensive computation for more traditional distributional assumptions

and asymptotic results. The bootstrap can be used to derive accurate standard errors,

confidence intervals, and hypothesis tests for most statistics.

Bootstrapping uses the sample data to estimate relevant characteristics of the population.

The sampling distribution of a statistic is then constructed empirically by resampling

from the sample. The resampling procedure is designed to parallel the process by which

sample observations were drawn from the population. For example, if the data represent

an independent random sample of size n (or a simple random sample of size n from a

much larger population), then each bootstrap sample selects n observations with replace-

ment from the original sample. The key bootstrap analogyis the following: The popula-

tion is to the sample as the sampleis to the bootstrap samples. ,

Having produced r bootstrap replicates 6% of an estimator6, the bootstrap standard error

is the standard deviation of the bootstrap replicates:

~ x2
SE*(6*) _— = (0; —§ )

r—1

where 0is the mean of the Oy. In large samples, where we can rely on the normality of

6, a 95% confidenceinterval for @ is given by 0 £1.96 SE* (6*).

A nonparametric confidence interval for 6 can be constructed from the quantiles of the

bootstrap sampling distribution of 6*, The 95% percentileintervalis Grower) <O< Oper)

where the Op) are the r ordered bootstrap replicates; lower = .025xr and upper

= 975 xr.

The lower and upper bounds of percentile confidence intervals can be corrected to

improve the accuracy ofthese intervals.

Regression models can be bootstrapped by (1) treating the regressors as random and

selecting bootstrap samples directly from the observations z; = [Y;,Xn,...,Xix], or (2)

treating the regressors as fixed and resampling from the residuals £; of the fitted regres-

sion model. In the latter instance, bootstrap observations are constructed as

yy = Y; + Ex, where the Y; are the fitted values from the original regression, and the

Ej, are the resampled residuals for the bth bootstrap sample. In each bootstrap sample,

the Y;, are then regressed on the original Xs. A disadvantage of fixed-X resampling is

that the procedure implicitly assumes that the regression model fit to the data is correct

and that the errors are identically distributed.

Bootstrap hypothesis tests proceed by constructing an empirical sampling distribution

for the test statistic. If T represents the test statistic computed for the original sample

and 7; is the test statistic for the bth of r bootstrap samples, then (for a chi-square-like

test statistic) the p-valuefor the test is #(7j 2T)/r.

The bootstrap can be applied to many complex sampling designs (involving, e.g., strati-

fication, clustering, and case weighting) by resampling from the sample data in the same

manneras the original sample was selected from the population.  
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Recommended Reading
 

Bootstrapping is a rich topic; the presentation in this chapter has stressed computational proce-

dures at the expense of a detailed accountofstatistical properties and limitations.

e Although Efron and Tibshirani’s (1993) book on the bootstrap contains somerelatively

advanced material, most of the exposition requires only modest statistical background

and is eminently readable.

e Davison and Hinkley (1997) is anotherstatistically sophisticated, comprehensive treat-

ment of bootstrapping.

e briefer source on bootstrapping, addressed to social scientists, is Stine (1990), which

includes a fine discussion ofthe rationale of bootstrap confidence intervals.

e Young’s (1994) paper and the commentary that follows it focus on practical difficulties

in applying the bootstrap.

   


