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METHODOLOGICAL ARTICLE

Introduction to Permutation and Resampling-Based
Hypothesis Tests

Bonnie J. LaFleur

Division of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public
Health, University of Arizona

Robert A. Greevy

Department of Biostatistics, Vanderbilt University Medical Center

A resampling-based method of inference—permutation tests—is often used when
distributional assumptions are questionable or unmet. Not only are these methods use-
ful for obvious departures from parametric assumptions (e.g., normality) and small
sample sizes, but they are also more robust than their parametric counterparts in the
presences of outliers and missing data, problems that are often found in clinical child
and adolescent psychology research. These methods are increasingly found in statistical
software programs, making their use more feasible. In this article, we use an application-
based approach to provide a brief tutorial on permutation testing. We present some
historical perspectives, describe how the tests are formulated, and provide examples
of common and specific situations under which the methods are most useful. Finally,
we demonstrate the utility of these methods to clinical and adolescent psychology by
examining four recent articles employing these methods.

HISTORY AND BACKGROUND

There is a renewed interest in using distribution-free
methods for making parametric inferences based
solely on the principle of permutation (sometimes called
randomization or re-randomization tests). This
methodology, examined early by Fisher (1936), Pitman
(1937a–c), and Kempthorne (1952), is used in multiple
ways. For example, it is frequently used to support the
validity of normal theory results (e.g., Fisher’s argument
in the 1930’s was one in support of the Student’s t-test).
Historically, applied statisticians have revisited and
extended these methods in many contexts. Zerbe
(1979) and Raz (1989) extended Kempthorne’s work
for growth curve analysis. Draper and Stoneman (1966)
employed the randomization method for the special case

of a multiple linear regression. In the context of multiple
regression, Kennedy (1995) and Kennedy and Cade
(1996) gave thorough summaries of several methods that
may be used to conduct randomized tests.

One of the most compelling reasons to use permutation
methods for inference is the robust nature of these meth-
ods. Not only do permutation test statistics have relatively
weak assumptions they are also more robust than their
parametric counterparts when faced with typical chal-
lenges of experimental data (e.g., outliers or extreme distri-
butions). Statistical tests that rely on summary statistics
(e.g., the mean) can be unduly influenced by the presence
of outliers. Since permutation tests are based on test statis-
tics obtained for the observed data relative to test statistics
of permutations of the data, the influence of extreme data
points is mitigated. Parametric statistical inference relies
on assumptions that are justified by taking a random
sample from an infinite population. Violating this princi-
ple invalidates the use of parametric test statistics and their
subsequent inference although the permutation test can
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still be applied. Most research in child and adolescent
psychology is not done on true random samples from an
infinite population. Instead, most samples are drawn from
clinics, schools or other populations that are assessable
to investigators. Frequently, assumptions required for
parametric hypothesis testing are unmet or questionable,
and while there are many reasons that permutation tests
are attractive, flexible assumptions and their robust nature
in these circumstances are the most appealing.

Permutation tests do have assumptions. The primary
assumption underlying permutation tests is ‘‘exchangeabil-
ity’’ of errors. Exchangeability assumes that, under the null
hypothesis, the labels in an experiment (e.g., subject iden-
tification with respect to experimental condition) do not
influence the outcome of the experiment. This means that
if the subject identification labels, for example, were ran-
domly placed on the observed data, the results would
not change. Additionally, permutation tests do assume
that the underlying distributions are symmetric and pri-
marily are designed to test shifts (e.g., difference in means).

Critics of permutation or randomization tests state that
one of the drawbacks is that the permutation distribution
is the sampling distribution and inference can only be
made about the sample at hand, not generalized to a larger
population (Koch, 1988). Many proponents of permuta-
tion or randomization tests, including Manly (1997), argue
that realistically this is a drawback of all statistical metho-
dology that relies on the existence of a larger, perhaps
unknown, sampled distribution. Additionally, there are
many who believe these tests should only be used with ran-
domized experiments. Kempthorne’s (1952) work dealt
mainly with analysis of variance and focused on permuting
subjects to positions based on treatment randomization.
Permutation tests are sometimes more conservative than
their parametric equivalent test statistics. This is in part
due to the discrete nature of the permutational p-values.
While it is always possible that the permutation test is
not the most powerful test, in which case the most power-
ful test will be preferred, this is not specific only to permu-
tation tests but all statistical inferential procedures. The
ideas generated by Fisher (1935) and described by Pitman
(1937a–c) continue to be source of theoretical discussion.
Interested readers can find thorough and understandable
clarifications in books by Edgington (1995), Manly
(1997), and Lunneborg (2000). Berger (2000) has a very
nice discussion on the use of permutation tests specific to
clinical trials. Good’s (2004) book also contains excellent
descriptions and details of permutation tests, as well as a
detailed bibliography.

Our tutorial in this article focuses on methods of
inference that are available using standard software
and provides examples of the best instances to use these
types of hypothesis testing. We do not delve into theore-
tic underpinnings unless necessitated by the examples we
provide. There is a relationship to methods employing

permutations and rank-based methods, such as the rank
sum test statistic. However, since they are not based on
random permutations of sample data, they are not
described here.

DEFINITIONS

Permutation tests are considered a special case of non-
parametric tests. Nonparametric test statistics do not
rely on a specific probability distribution (e.g., normal,
chi-square, binomial) that describes the underlying
population. However, permutation tests are not quite
‘‘distribution free.’’ Some underlying assumptions are
required with respect to the samples (e.g., exchangeabil-
ity). Permutation tests are sometimes called randomiza-
tion (or rerandomization) tests and may be used
interchangeably by some. Kempthorne (1986) states that
the fundamental difference between the two is that per-
mutation tests are based on random sampling. Randomi-
zation, or rerandomization, tests are based on a sample
that has been randomized a priori (before data collec-
tion). Edgington (1995) discusses randomization tests
as special types of permutation tests and notes that the
rationale is different. These discussions also are found
throughout Kempthorne’s work (1955, 1966, 1972,
1975). We have chosen to use the terms loosely in this
tutorial, although the examples may or may not be from
a distribution that has been randomized a priori.

Permutation tests also are called resampling tests, a
subset of nonparametric statistics. Statistical inference
depends upon examining random samples of observa-
tions from a particular population. Resampling-based
methods work within the principle of resampling from
a sample that may or may not be a random sample.
Resamples are used as the ‘‘data’’ for inference. Gener-
ating p-values from a permutation test is easy to imple-
ment. Data permutation is one of the most complicated
processes, along with ensuring randomness when a
random sample of permutations is used.

Permutation tests proceed as follows: (1) data from
an experiment are tested using some pre-specified test
statistic, (2) the test statistic is generated for the original
sample of the data (sometimes called the observed per-
mutation), and (3) the results are saved. Data permuta-
tions are then enumerated. The permutations often are
referred to as the physical act of permuting subjects to
labels. The permutations either can be all n! permuta-
tions, the number of conditional permutations based
on experimental design, or a random sample of all pos-
sible permutations. A test statistic is then calculated for
each of the permutations and compared against the test
statistic based on the original data. The permutational
p-value is calculated by the following: the number of
times the test statistics from the permuted data are equal
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to or more extreme (larger) than the original test statistic
divided by the total number of permutations examined.
These test statistics can be based on distributions (e.g., a
t-test statistic in the case of a two-sample test with con-
tinuous measurements) or based on some other defined
statistic (e.g., the value of 1,1 cell in a 2 by 2 table is
often used in Fisher’s exact test).

Even with the immense power available in today’s per-
sonal computers, enumerating all possible permutations
for even a modest size dataset remains a daunting task.
Edgington’s (1980) rationale proves that employing a ran-
dom sample of possible permutations is valid. Based on the
work by Dwass (1957), Manly (1997) notes that permuta-
tion tests based on a random sample of permutations is still
‘‘exact.’’ However, random permutations will be less
powerful than all possible permutations, and increasing
the number of random permutations will increase power.
Manley suggests that a minimum of 1,000 permutations
are desired for tests to result in a 5% level of significance.
As few as 200 permutations may be sufficient as demon-
strated in a recent paper by Fitzmaurice and Lipsitz
(2007). In our experience, 10,000 random permutations
give reliable results while reducing computing time consid-
erably compared to evaluation of all data permutations.
This is particularly true for complicated models (i.e., many
predictors), as these models can still require nontrivial
computing time to process.

Resampling statistics also include the bootstrap (sam-
pling with replacement) and the jackknife (leave-one-
out) methods. Traditionally, the jackknife has been used
to reduce bias in small samples, calculate confidence
intervals around parameter estimates, and to test
hypotheses (Manly, 1997; Tukey, 1958). Bootstrap
methods have long been used to estimate standard
errors in cases where the distribution of the data is not
known, and are often used to construct confidence inter-
vals around parameter estimates. Efron’s and Tibshira-
ni’s (1993) text describes bootstrap resampling. Other
reviews can be found in Manly (1993) and Davison
and Hinkely (2003). In most cases, permutation testing
is more powerful than the bootstrap approach (and per-
haps the jackknife), although Good (2000) considers
some conditions under which the bootstrap may be
more powerful. Westfall and Young (1993, Chapter 5)
show that the difference in reported p-values between
using bootstrap resampling and permutation resampling
is quite small in most examples. Bootstrap and permuta-
tion resampling almost always result in the same inferen-
tial interpretation (i.e., reject or not reject the null
hypothesis). The bootstrap approach, using confidence
intervals for hypothesis testing, will work in some situa-
tions where the permutation testing approach will not.
For example, neither the parametric nor the
permutation-based tests are estimable in some
unbalanced ANOVA designs. However, it is possible

to calculate bootstrap confidence intervals of the
interaction of interest.

WHEN ARE THESE METHODS USED?

Primarily, these tests are used when assumptions for
parametric tests cannot be met, experiments with small
sample sizes, or when an exact test is desired. Exact tests
are those where the significance level of the test is equal to
the false rejection rate. If all distributional assumptions
are met, the parametric tests are exact. Permutation tests
always calculate exact significance levels when looking at
all data permutations. Deviations from the exact signifi-
cance level will occur when the exchangeability assump-
tion is not met. Generally, significance levels (using
bootstrap or jackknife sampling) are not exact. Permuta-
tion tests also are as powerful as the unbiased parametric
test for small sample sizes (Good, 2000).

Another advantage of permutation tests is that infer-
ence can be made in cases when analysis is hampered
by computational difficulties. For example, when there
is collinearity in the data that results in separation of data
points or structural zeros, and also in sparse datasets.
This will be discussed further in the logistic regression
example. It is debatable whether these methods help in
cases where the assumption of unequal variances is ques-
tioned or violated. For instance, if the study is a compar-
ison of groups from a generalizable random sample and
the question is whether or not these groups have different
means, the permutation tests are as vulnerable to unequal
variances as their normal theory counterparts. However,
if the sample is a randomized, controlled trial and
inference is limited to the randomized sample and
exchangeability is the only required assumption; unequal
variances are not an issue. Viewed in this light, permuta-
tion tests can be tailored to include many sampling
schemes (random or not) and the statistical tests will be
viable, and perhaps exact, for most practical problems.

EXAMPLES

Two Group Example Using Student’s t-Test Statistic

For a simple, illustrative example imagine a random
sample of fifth grade girls, three from a traditional co-
ed school and three from an experimental school that
offers single-gender classes. The unrealistically small
sample size of six girls is used so the reader can see
the permutation test completely illustrated in Table 1.

Each of the girls is given the Harter Self-Perception Pro-
file for Children (Harter, 1985) this 36 item profile mea-
sures of six domains of self-perception, but for simplicity
will be presented as a summary score ranging from 0–36.
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The self-perception scores for the girls in the traditional (T)
co-ed school were as follows: child 1¼ 12, child 2¼ 10,
child 3¼ 11; and for the experimental (E) single-gender
school: child 1¼ 14, child 2¼ 13, and child 3¼ 28. The
mean self-perception score for the experimental school is
18.3 and for the traditional school is 11.0, yielding a differ-
ence in means of 7.3. For a parametric analysis, a standard
two-sample t-test gives a one-sided p-value of 0.10. Thus,
we would not reject the null hypothesis of no difference
in self-perception between the schools at a 0.05 significance
level. The standard two-sample t-test (ANOVA) assumes
the two populations from which the girls were drawn both
had normally distributed self-perception scores and that
the variances of those two populations are the same. While
these assumptions can never be proven, one typically uses
the sample data to comment on the plausibility of those
assumptions. With small sample sizes, the plausibility
can be difficult to determine.

Now consider doing a permutation test instead. There
are 6!, i.e., 6 � 5 � 4 � 3 � 2 � 1¼ 720, ways to permute the six
students’ self-perception scores and 20 unique permuta-
tions of the data (6!=3!3!, since there are 3 in each of
the 2 groups). The numerator is based on the total sample
size and the denominator is from the number of ways that
the data can be partitioned into the number of groups or
categories in the study. This example has 2 groups of 3
subjects in each group. A discussion about permutations
and combinations of data can be found in introductory
mathematical statistics textbooks, such as Bain and
Engelhardt (1987). Based on these partitions, there are
36 ways we can find a difference between the means of
7.3 (simply rearrange the observed scores within each

group and take the difference). Table 1 lists the 20 possi-
ble differences in means for the 720 different permuta-
tions. Permutation numbers are groups of permutations
that result in the same data (e.g., permutation numbers
1–36 all had self-perception scores of 10, 11, and 12 for
traditional school and scores of 13, 14, and 28 for the
experimental school). In this example we are using the
difference in means as the ‘‘test statistic,’’ we could have
used the calculated t- or F-test statistic as our test statistic
with the same conclusion and resultant p-value.

The set of permutations that include the observed
data are shown in the first row of Table 1. The p-value
for a permutation test is the proportion of permutations
that yield a value as extreme (equal to) or more extreme
(greater than) compared to the observed value. For
these differences, ‘‘extreme’’ means in the direction of,
or strongly favoring, the alternative hypothesis. The null
hypothesis is that there is no difference in self-perception
between schools, and the alternative hypothesis is that
the self-perception is higher for children in the experi-
mental school (i.e., the difference of mean E–mean T
is greater than zero). For the observed permutation
the difference in means is 7.3. There are 36 permutations
as extreme as this and no permutations, which yield
values more extreme, yielding a p-value for the permuta-
tion test of 36=720¼ 0.05. Thus, the permutation test
would reject the null hypothesis at a 0.05 significance
level in favor of the alternative that girls attending the
experimental school have higher self-perception scores.
This small, illustrative dataset is useful in allowing the
reader to see all the possible permutations of the data
in a simplified format. However, it is worth noting that

TABLE 1

All Possible Permutations of Six Students’ Self-perception Scores

Permutation Number Traditional School (T) Experimental School (E) Mean T Mean E Difference (E-T)

1–36 10 11 12 13 14 28 11.0 18.3 7.3

37–72 10 11 13 12 14 28 11.3 18.0 6.7

73–108 10 11 14 12 13 28 11.7 17.7 6.0

109–144 10 12 13 11 14 28 11.7 17.7 6.0

145–180 10 12 14 11 13 28 12.0 17.3 5.3

181–216 11 12 13 10 14 28 12.0 17.3 5.3

217–252 11 12 14 10 13 28 12.3 17.0 4.7

253–288 10 13 14 11 12 28 12.3 17.0 4.7

289–324 11 13 14 10 12 28 12.7 16.7 4.0

325–360 12 13 14 10 11 28 13.0 16.3 3.3

361–396 10 11 28 12 13 14 16.3 13.0 �3.3

397–432 10 12 28 11 13 14 16.7 12.7 �4.0

433–468 10 13 28 11 12 14 17.0 12.3 �4.7

469–504 11 12 28 10 13 14 17.0 12.3 �4.7

505–540 11 13 28 10 12 14 17.3 12.0 �5.3

541–576 10 14 28 11 12 13 17.3 12.0 �5.3

577–612 12 13 28 10 11 14 17.7 11.7 �6.0

613–648 11 14 28 10 12 13 17.7 11.7 �6.0

649–684 12 14 28 10 11 13 18.0 11.3 �6.7

685–720 13 14 28 10 11 12 18.3 11.0 �7.3
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an equally divided sample of size six could never detect a
significant difference in a two-sided test on the difference
in means. For a two-sided hypothesis of no difference
between the self-perception scores the smallest possible
p-value we could obtain would be 72=720¼ 0.10.

Creating Confidence Intervals

The previous example tested whether girls in a tradi-
tional school had the same mean self-perception score
as girls in an experimental single-gendered school (i.e.,
it tested the null hypothesis Ho: lE� lT¼ 0–. What
about testing the hypothesis that on average girls in
the experimental school score one and half points higher
(i.e., Ho: lE� lT¼ 1.5)? What about calculating a plau-
sible range of values for the difference in the mean
scores, lE-lT? In this example, these two questions are
related. Using the previous example, let’s suppose we
want to create a 90% confidence interval (CI) for the dif-
ference in the mean self-perception scores between girls
in the experimental and traditional schools. We are
using a 90% CI instead of the more common 95%
because the example dataset is so small. The simplest
way to create a confidence interval using a permutation
test is to imagine doing many two-sided tests at some
significance level to test many null hypotheses (e.g.,
the true difference in mean scores is 1, . . . is 1.5, . . . is
2.1, etc.) Then use the range of values that were not
rejected in the hypothesis test as the confidence interval.
You can call this CI the acceptance region of your test.
To create a 90% CI, we will use a 0.10 significance level,
as opposed to a 0.05 level used for a 95% CI.

Let’s consider testing the null hypothesis that the true
difference between the mean scores is 1.5 (i.e., the self-
perception scores for girls in the experimental school
are on average 1.5 points higher). We test this by sub-
tracting 1.5 from each of the observed scores for the girls
in the experimental schools and apply our permutation
test to the shifted dataset. Table 2 shows the resulting
data after this shift.

The set of permutations that include the observed
data are labeled permutations 1–36 and shown in bold.
The shifted observed data have a difference in means
of 5.8. There are 144 permutations rated as extreme or
more extreme (�5.8 and �6.2). The p-value for the
permutation test on the shifted data is 144=720¼ 0.20
and would not be rejected at a 0.10 level. Thus, the
hypothesized difference in mean scores of 1.5 belongs
in the interval. An examination of Table 1 will reveal
that values down to 1.00 also would be included in the
interval, and values of 0.99 or less would not. Thus,
1.00 would be the lower bound of the CI. Similarly,
18.00 would be included in the interval, but 18.01 would
not. Hence, the 90% CI is [1.00, 18.00]. Although the
construction of these acceptance regions may be more
complex with larger datasets and different data types,
advanced software packages have sophisticated mechan-
isms to create the confidence intervals.

Three Group Example Using Anova

The previous example looked at the simplest case of
comparing the means of two groups. What if there are
three groups? The following example is taken from the

TABLE 2

Shifted Behavior Scores for Testing the Hypothesis Ho: lE�lT¼1.5

Permutation Number Traditional School (T) Experimental School (E) Mean T Mean E Difference (E�T)

1–36 10 11 12 11.5 12.5 26.5 11.0 16.8 5.8

37–72 10 11 11.5 12 12.5 26.5 10.8 17.0 6.2

73–108 10 11 12.5 12 11.5 26.5 11.2 16.7 5.5

109–144 10 12 11.5 11 12.5 26.5 11.2 16.7 5.5

145–180 10 12 12.5 11 11.5 26.5 11.5 16.3 4.8

181–216 11 12 11.5 10 12.5 26.5 11.5 16.3 4.8

217–252 11 12 12.5 10 11.5 26.5 11.8 16.0 4.2

253–288 10 11.5 12.5 11 12 26.5 11.3 16.5 5.2

289–324 11 11.5 12.5 10 12 26.5 11.7 16.2 4.5

325–360 12 11.5 12.5 10 11 26.5 12.0 15.8 3.8

361–396 10 11 26.5 12 11.5 12.5 15.8 12.0 �3.8

397–432 10 12 26.5 11 11.5 12.5 16.2 11.7 �4.5

433–468 10 11.5 26.5 11 12 12.5 16.0 11.8 �4.2

469–504 11 12 26.5 10 11.5 12.5 16.5 11.3 �5.2

505–540 11 11.5 26.5 10 12 12.5 16.3 11.5 �4.8

541–576 10 12.5 26.5 11 12 11.5 16.3 11.5 �4.8

577–612 12 11.5 26.5 10 11 12.5 16.7 11.2 �5.5

613–648 11 12.5 26.5 10 12 11.5 16.7 11.2 �5.5

649–684 12 12.5 26.5 10 11 11.5 17.0 10.8 �6.2

685–720 11.5 12.5 26.5 10 11 12 16.8 11.0 �5.8
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textbook by Siegel (1956, Table 8.5). It is a hypothetical
dataset that examines the hypothesis–school administra-
tors are more authoritarian than classroom teachers.
The response interest variable is the score on an F scale
and measures the degree of authoritarianism. There are
14 subjects divided into 3 groups: (1) teaching-oriented
teachers (teachers currently in the classroom who wish
to stay in the classroom), (2) administration-oriented
teachers (teachers currently in the classroom but aspire
to administrative positions), and (3) administrators.
Table 3 shows the fictional scores of these groups.

There are 252,252 (14!=(5!5!4!)) possible permutations
of these data. Using a random sample of 10,000 permu-
tations, Table 4 shows the permutational p-values for the
various hypothesis tests of interest as well as the normal-
theory results from an ANOVA.

In Table 4, the population means for the three groups
in Table 3 are labeled l1, l2, and l3, respectively. The
exact results from the permutation tests are similar to
the approximate results from the test that assumes
normality. These methods can be applied to more
complicated, multifactor experiments. Although the
computational needs increase greatly with the number
of subjects, as well as the number of parameters of
interest, Manly (1997) and Pesario (2001) discuss
multivariate permutation models and complicated
design structures.

Logistic Regression Example

The primary utility for using permutation based p-
values in logistic regression is the same as that for the
linear models described above (i.e., parametric based

methods can result in incorrect or biased inference
because of assumption violations, particularly when
there are small sample sizes). Additionally, algorithms
that are used to fit nonlinear models are complicated,
and can have convergence problems, adding yet another
level of utility for permutation methods. Permutation-
based tests for these models employ algorithms
that work in situations where parametric-based methods
do not.

The most well known approach to exact methods for
logistic regression is implemented in a commercial soft-
ware package called LogExact (Cytel, Inc., Cambridge,
MA) and has recently been implemented in SAS (SAS
Institute Inc., Carey, NC). These software packages
implement an algorithm developed by Hirji, Mehta,
and Patel (1987) and are based on what is known as
exact conditional inference. The comparison between
conditional and unconditional inference has been a
source of controversy since the introduction of Fisher’s
exact test. A well-written survey about the use of condi-
tional permutation methods for contingency tables can
be found in Agresti (1992). He discusses the 2� 2 table
where test statistics are constructed for data condition-
ing on marginal totals. The extension of the 2� 2 table
approach to binary logistic regression is well described
by Cox and Snell (1989).

Under conditional logistic regression (as in the Fisher
exact test), structure is placed on the marginal totals.
When leaving the row and column totals fixed, the
results are the same as permuting results of 2� 2 tables
(or sets of 2� 2 tables when there are more than one
predictor variables). Further, this software uses a unique
algorithm that speeds up processing when estimating the
exact p-values. The LogExact package and SAS imple-
mentation of exact conditional logistic regression model
these conditional tests exclusively. To use the software,
predictor variables must either be categorical, or the
sample size must be small enough to impose a categori-
cal structure (e.g., the program will assume that the con-
tinuous variables are categorical). As an example we
construct a 2� 2� 2 contingency table based on the
number of subjects that responded to an intervention
by sex (b1) and age (b2) (see Table 5).

Table 6 shows the results using a logistic regression
model under binomial distribution assumptions in

TABLE 3

Authoritarianism Scores of Three Groups of Educators

(Artificial Data)

Teaching-oriented

teachers (Group 1)

Administration-oriented

Teachers (Group 2)

Administrators

(Group 3)

96 82 115

128 124 149

83 132 166

61 135 147

101 109

TABLE 4

Anova Results

Hypothesis

Tested

Permutational

p-value

Likelihood

Ratio p-value

l1¼ l2¼ l3¼ 0 0.0275 0.0222

l1� l2¼ 0 0.1466 0.1436

l1� l3¼ 0 0.0090 0.0069

l2� l3¼ 0 0.0952 0.0945

TABLE 5

a 2�2� 2 Contingency Table

Male Female

<5 yrs 5–10 yrs <5 yrs 5–10 yrs

Responder 0 1 0 2

Non-Responder 1 1 2 0

PERMUTATION AND RESAMPLING-BASED HYPOTHESIS TESTS 291

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
W

is
co

ns
in

-M
ilw

au
ke

e]
 a

t 1
6:

20
 0

5 
O

ct
ob

er
 2

01
4 



contrast to the permutational p-value based on the con-
ditional model using LogExact. The example shows that
the permutational p-values (exact in this case) are differ-
ent than the p-values that assume an underlying bino-
mial sampling distribution. The discrepancy is due to
sparse data (i.e., cells with zero).

This often happens with small sample sizes, or with
many categories of data with respect to sample size.
Data with many zero cells lead to what is sometimes
called ‘‘separation’’ or ‘‘quasi-separation’’ of data
points. In these circumstances the p-values based on
the likelihood ratio test are invalid. When there is
complete separation of data points, logistic regression
programs will generally not converge or give any esti-
mates. As an example, if the data depicted in Table 5
resulted in all responders being male between 5–10 years
old (without the 1 nonresponder that was<5 years old)
then this would be called complete separation of data
points and programs written in commercial statistics
packages would not converge. Thus, no results would
be reported or there would be a warning that conver-
gence criterion was not met. However, when the data
result in quasi-separation, as shown in Table 5, some
programs will converge on an incorrect estimate. A
number of commercial statistical packages will give a
warning message that the estimates and test statistics
are not valid. Unfortunately, others do not give warning
messages and can lead to incorrect statistical inference.
In summary, there are two clear circumstances to apply
exact methods for logistic regression: (1) when you have
small sample sizes and (2) when there is complete or par-
tial separation of data points. In other situations,
approximate methods will result in the same inference
as their exact counterparts.

ADVANCED TOPICS

Complications arise when applying permutation methods
to multiple regression of any type because the regression
framework has fewer model constraints. For instance, if
there is a response variable and two covariates, what gets
permuted? In a conditional setting, or when there is
a structure imposed due the experimental design

(ANOVA), permutation is done based on the design.
Details about how to use permutation tests in multiple
regression models can be found in papers by Anderson
and Legendre (1999), Kennedy and Cade (1996), ter
Braak (1992), and others. The relationship between test
statistics and hypotheses in these unstructured (nonran-
domized) models are discussed in LaFleur (1999).

Modern genomic analyses have incorporated permu-
tation tests into the analysis of oligonucleotide microar-
ray data (i.e., gene chip technology), specifically for
probe-based tests of significance (e.g., one probe at a
time, where a number of probes are associated with
genes of interest). One rationale for using permutation
tests in these settings is the small numbers of samples
used. This is in contrast to the large numbers of genes
being tested. The use of these exact tests do not protect
from the problem of multiplicity (i.e., the probability of
finding false positives). Methods associated with these
tests that adjust p-values for this situation are discussed
in the context of multiple testing in Westfall and Young
(1993). When testing group differences between large
numbers of probes individually, exact tests will be pro-
tective against normality and other large sample approx-
imation assumptions on a gene-by-gene basis, a primary
motivation for using permutation tests. A distinction
needs to be made between permutation p-values and
permutation adjusted p-values. The latter is a method
for adjusting for multiple testing using the minimum
p-value for all tests (as discussed in Westfall and Young
(1993, 1998). The former is a p-value obtained by the act
of physically permuting the data.

An in-depth discussion about the use of permutation
methods in logistic regression, and the differences
between unconditional and conditional methods, can
be found in a recent paper by Potter (2005). He describes
the theoretical distinctions between these alternative
methods. We refer readers interested in a more technical
description to his paper and to the paper by Mehta and
Patel (1995). In this tutorial, we focused on conditional
methods because they are incorporated into commercial
software packages and more accessible. For small sam-
ple sizes, Potter (2005) shows that the mid-p-values
obtained using conditional methods are equivalent to
unconditional p-values. Additional applications of
unconditional methods can be found in LaFleur
(1999). In this dissertation, unconditional methods are
also extended to generalized linear models that include
logistic, Poisson, gamma, and other distributions as
described by McCullagh and Nelder (1989).

SOFTWARE

Most statistical packages have some permutation or
other resampling test procedures. Many, however, are

TABLE 6

Results from the Logistic Regression Model

Hypothesis

Tested

Permutational

p-value

Likelihood

Ratio p-value<

b1¼b2¼ 0 0.2857 0.0336

b1¼ 0 1.000 0.0245

b2¼ 0 0.1617 0.6576

<From SAS Proc Logistic.
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specific to statistical tests used for categorical or logistic
regression models. SAS has a procedure that allows for
permutation-based testing for two sample t-tests and
ANOVA models called Proc Multtest. Because both
permutation p-values and adjusted permutation p-
values can be output by the program, users must be
careful not to confuse the two. StatExact is a stand
alone package that includes a very comprehensive set
of exact, permutation and other nonparametric test sta-
tistics for categorical data. SAS, SPlus, R, STATA, and
SPSS have programs for exact categorical tests. The pro-
grams in SAS and SPSS are subsets of the capabilities
from StatExact package. SAS and the stand-alone
program LogExact can perform permutation tests for
logistic regression.

STATA has incorporated some user-defined func-
tions to perform these tests. All of the larger
packages—MINITAB, SAS, SPlus, SPSS, STATA,
and R—allow for user defined programming, enabling
these methods to be implemented easily and efficiently.
Another useful package, Resampling Stats, is affiliated
with a Website that contains helpful information and
tutorials covering multiple types of resampling methods
(www.resample.com). Many of the textbooks referenced
in this paper have sample programs that can be adapted
into these packages (e.g., Lunneborg, 2000).

SUMMARY

We have presented an introduction to applying permu-
tation hypothesis testing, using historical references
and examples to clarify the process. Permutation
hypothesis testing is optimal when distribution-based
hypothesis test assumptions are questioned. Although
there are arguments against their use, permutation-
based hypothesis tests are exact and as powerful as their
parametric counterparts when distributional assump-
tions are not met. In some cases, the bootstrap and jack-
knife resampling tests are more powerful. However, they
are not exact as are the permutation tests.

A simple, and non-exhaustive, literature review
offers four examples of when these methods might be
used in practice. First is a study that presents permuta-
tional p-values for two-sample t-tests (Gambea, 2005).
This study examined whether or not 13- and 14-month-
old infants can comprehend references about missing
objects. The investigators questioned whether the nor-
mality assumption of the scoring outcome was valid.
They therefore presented permutational p-values based
on the t-test in the article. The other three articles (i.e.,
Bolton, Park, Higgins, Griffiths, & Pickles, 2002;
Busch et al., 2002; Chadwick, Taylor, Heptinstall, &
Danckaerts, 1999) used conditional logistic regression
because data points were partially or completely

separated. Exact logistic regression is one of the most
common permutation approaches (outside of Fisher’s
exact test) seen in the literature. It is readily available
in commercial statistical software programs and
applied primarily when standard logistic regression will
not converge or produces suspicious output (e.g., very
large standard errors). There are many other cases
where a permutation approach is warranted and the
authors encourage the use of these tests wherever
practical, particularly when model assumptions may
not be valid.
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