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Special Section: Using Simulation to Convey Statistical Concepts
Tutorial

The main idea behind the bootstrap is that in some situ-
ations, it is better to make inferences about a population 
parameter using only the data at hand, without making 
assumptions about underlying distributions. For instance, 
the t test is based on the assumption that the t statistic 
has a certain sampling distribution, given some assump-
tions about the population.1 However, when these 
assumptions are wrong, the t test does not behave as 
expected, which potentially leads to increased numbers 
of false positives and lack of statistical power. With the 
bootstrap, one does not make such assumptions, but 
instead uses the data to estimate sampling distributions 
using computer-based simulations, sampling from the 
data with replacement.

Many bootstrap techniques have been developed to 
address a large variety of statistical problems, and we 
refer interested readers to reviews, books, and tutorials 

on this vast topic (e.g., Efron & Hastie, 2016; Efron & 
Tibshirani, 1994; Hesterberg, 2015b; Rousselet et  al., 
2019; Wilcox, 2017). Without going into the details, for 
the purpose of this Tutorial we focus on bootstrapping 
as an important statistical concept and use the percentile 
bootstrap, the simplest form of bootstrap, for illustration. 
This method has been shown to work in a large variety 
of situations, and its simplicity is ideal for learning how 
the bootstrap works. First, we explain how the percentile 
bootstrap is implemented in base R (R Core Team, 2020), 
before covering the calculation of confidence intervals 
and p values, and how to perform group comparisons 
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Abstract
The percentile bootstrap is the Swiss Army knife of statistics: It is a nonparametric method based on data-driven 
simulations. It can be applied to many statistical problems, as a substitute to standard parametric approaches, or in 
situations for which parametric methods do not exist. In this Tutorial, we cover R code to implement the percentile 
bootstrap to make inferences about central tendency (e.g., means and trimmed means) and spread in a one-sample 
example and in an example comparing two independent groups. For each example, we explain how to derive a 
bootstrap distribution and how to get a confidence interval and a p value from that distribution. We also demonstrate 
how to run a simulation to assess the behavior of the bootstrap. For some purposes, such as making inferences about 
the mean, the bootstrap performs poorly. But for other purposes, it is the only known method that works well over a 
broad range of situations. More broadly, combining the percentile bootstrap with robust estimators (i.e., estimators that 
are not overly sensitive to outliers) can help users gain a deeper understanding of their data than they would using 
conventional methods.
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(see our companion R Notebook on GitHub, at https://
github.com/GRousselet/bootsteps). For an accessible 
introduction to R, we recommend several print books 
(Crawley, 2012; Dalgaard, 2008; Wickham & Grolemund, 
2017), as well as the free online R for Data Science 
(Grolemund & Wickham, n.d.). Bootstrap functions are 
available in many R packages, some of which are listed 
in Table 1. All these packages differ in their implementa-
tions. For instance, the popular boot package (Tibshirani 
& Leisch, 2019) provides a generic function that can 
handle many situations, but it requires users to write 
functions, which is impractical for R beginners. In this 
Tutorial, we focus on low-level R implementation, to 
give users a concrete understanding of the bootstrap’s 
mechanics. In addition, the companion R Notebook 
demonstrates how to use functions from Wilcox (2017) 
and from the boot package.

Disclosures

All the figures and analyses presented in this Tutorial 
can be reproduced using a notebook in the R program-
ming language (R Core Team, 2020) that we have made 
available on OSF (https://osf.io/dvuze/). Novice R users 
will probably find the GitHub version of the code easier 
to use (https://github.com/GRousselet/bootsteps). Using 
the R Notebook also requires the free and user-friendly 
RStudio interface (RStudio Team, 2020). The figures were 
created using the ggplot2 package (Wickham, 2016).

Bootstrap Implementation

The core mechanism of the bootstrap is sampling with 
replacement, which is equivalent to simulating experi-
ments using only the data at hand. Let us say we have 
a sample that is a sequence of integers:

samp
[1] 1 2 3 4 5 6

The last line, starting with [1], indicates an output in 
the R console. We can create this sequence using these 
commands in R:

n <- 6 # sample size
samp <- c(1:n)

To make bootstrap inferences, we sample with replace-
ment from that sequence using the sample() function. 
That is the engine under the hood of any bootstrap 
technique. The following code will generate our first 
bootstrap sample:

set.seed(21) # for reproducible 
results

sample(samp, size = n, replace = 
TRUE) # sample with replacement

[1] 1 3 1 2 5 3

The function set.seed() is used to determine the 
starting point of the random-number generator used by 
the sample() function. The number 21 has no particu-
lar meaning; it just ensures that different users of the 
same lines of code will get the same pseudorandom 
outcome (providing they use the same version of R). 
Typing some other value in this function will give a dif-
ferent result. We recommend setting the seed to some 
value when the code is distributed as part of a reproduc-
ibility package, for instance, as supplementary informa-
tion accompanying a research article. Because the 
bootstrap involves random sampling, it is also important 
to check that the bootstrap results are consistent across 
multiple seeds. This can be done by commenting out 
(adding # at the start of the line) or deleting the set.
seed call and then running the same chunk several 
times. If the results differ substantially across repeated 
calls to the same bootstrap code or function, the number 
of bootstrap samples should probably be increased (see 
discussion in Hesterberg, 2015b).

Table 1.  Examples of R Packages Containing Bootstrap Functions

R package Link Additional reference

bootstrap https://CRAN.R-project.org/package=bootstrap (Tibshirani & Leisch, 2019) Efron and Tibshirani (1994)
boot https://CRAN.R-project.org/package=boot (Canty & Ripley, 2020) Davison and Hinkley (1997)
simpleboot https://CRAN.R-project.org/package=simpleboot (Peng, 2019)  
WRS2 https://CRAN.R-project.org/package=WRS2 (Mair & Wilcox, 2020b) Mair and Wilcox (2020a)
resample https://CRAN.R-project.org/package=resample (Hesterberg, 2015a) Hesterberg (2015b)
car (Boot) https://CRAN.R-project.org/package=car (Fox & Weisberg, 2019a) Fox and Weisberg (2019b)
nlstools 

(nlsBoot)
https://CRAN.R-project.org/package=nlstools (Baty & Delignette-Muller, 2015) Baty et al. (2015)

dabestr https://CRAN.R-project.org/package=dabestr (Ho & Tumkaya, 2020) Ho et al. (2019)
rogme https://github.com/GRousselet/rogme (Rousselet & Wilcox, 2020b) Rousselet et al. (2017)

Note: For packages not focused on bootstrap methods, example bootstrap functions are listed in parentheses.

https://osf.io/dvuze/
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The three arguments of the sample function are used 
to define a vector of values to sample from, the size of 
each sample, and whether one wants to sample with or 
without replacement. For the percentile bootstrap, the 
size of the samples is always equal to the size of the 
data being sampled from, and sampling is always with 
replacement.

If we run the sample command again, we obtain 
another bootstrap sample:

[1] 3 4 2 6 6 6

And running the command another time, we obtain a 
third sample:

[1] 3 6 2 3 4 5

We could also generate our three bootstrap samples in 
one go:

nboot <- 3
matrix(sample(samp, size = n*nboot, 
replace = TRUE), nrow = nboot, byrow = 
TRUE)

           [,1] [,2] [,3] [,4] [,5] [,6]
[1,]    1    3    1    2    5    3
[2,]    3    4    2    6    6    6
[3,]    3    6    2    3    4    5

As is apparent from these three examples, in a boot-
strap sample, some observations are sampled more than 
once, and others are not sampled at all. So each boot-
strap sample is like a virtual experiment in which one 
draws random observations from the original sample. 
That is, with the bootstrap, one estimates from the data 
what it would be like to perform many experiments 
using the same population. This is sometimes called the 
plug-in principle (Efron, 2003).

How will we use the bootstrap samples? It might be 
tempting to use them to make inferences about the mean 
of our sample by asking what are the plausible popula-
tion means compatible with our data, without making 
any parametric assumptions. To answer this question, 
we compute the mean for each bootstrap sample. This 
can be done using a for loop. Although for loops can 
be avoided to write more compact code, they are very 
practical in many situations, and they make the code 
easier to read. Also, note that in R, as in Python (van 
Rossum & Drake, 2009), indexing is done using square 
brackets (e.g. boot.m[B]), whereas some other lan-
guages (e.g., MATLAB; Higham & Higham, 2016) use 
parentheses. We now generate 1,000 bootstrap samples 
using a for loop:

nboot <- 1000 # number of bootstrap 
samples

# declare vector of results
boot.m <- vector(mode = "numeric", 
length = nboot)

for(B in 1:nboot){ # bootstrap loop
boot.samp <- sample(samp, size = n, 
replace = TRUE) # sample with 
replacement

boot.m[B] <- mean(boot.samp) # save 
bootstrap means

}

The loop could be replaced by one line of code in which 
all bootstrap samples are generated at once (size = 
n*nboot), the results are reshaped as a matrix, and the 
apply() function is used to compute the mean for each 
row of the matrix of bootstrap samples:

boot.m <- apply(matrix(sample(samp, 
size = n*nboot, replace = TRUE), 
nrow = nboot), 1, mean)

The lollipop chart in Figure 1 illustrates the first 50 
bootstrap means for this example, in the order in which 
they were sampled. The bootstrap means randomly fluc-
tuate around the sample mean. They represent the 
means we could expect if we were to repeat the same 
experiment many times, given that we can sample only 
from the data at hand. Because we bootstrapped a very 
small sample of integer values, the bootstrap means take 
only a small number of unique values—25 exactly. We 
come back to this point later on.

All the bootstrap means can be illustrated using a 
density plot, which is like a smooth histogram that shows 
the relative probability of observing different bootstrap 
means (Fig. 2). This bootstrap distribution is an estimate 
of the sampling distribution of the mean (plug-in 
principle).

Bootstrap confidence interval

From this bootstrap distribution, we can derive a confi-
dence interval as follows:

alpha <- 0.05
ci <- quantile(boot.m, probs = 
c(alpha/2, 1-alpha/2))

round(ci, digits = 3)
2.5% 97.5%
2.17 4.83

In the code, we set alpha to .05 to obtain a 95% con-
fidence interval. The confidence interval bounds are 
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defined as the alpha/2 (.025) and 1-alpha/2 (.975) 
quantiles of the bootstrap distribution. These quantiles 
of the bootstrapped means correspond to the definition 
of the confidence interval: an interval that captures the 
mean in 1 – alpha cases in the long run. The resulting 
confidence interval is [2.17, 4.83], which is illustrated in 
Figure 3. Note that the quantile() function offers 
nine options for estimating the quantiles; here we used 
the default, quantile(x, type = 7). In certain 
situations, such as when the bootstrap estimates take 
only a limited number of values (Hesterberg, 2015b), 
quantile(x, type = 6) is recommended.

Bootstrap p value

To define a p value, we need a null value, which in our 
example is 2.5 (Fig. 4). Half of the p value (or a one-
sided p value) is the smaller of the proportion of boot-
strap means to the left of the null value and the 
proportion of bootstrap means to the right of the null 
value. In our example, the smaller proportion is to the 
left of the null value. To obtain the bootstrap p value 
(or two-sided p value), we multiply that value by 2.

Using code, the p value is obtained this way:

null.value <- 2.5 # null value for 
hypothesis testing

half.pval <- mean(boot.m > null.
value) +.5*mean(boot.m == null.
value)

pval <- 2*min(c(half.pval,1-half.
pval)) # P value = 0.155

pval
[1] 0.155

First we set the null value, and then we compute the 
proportions corresponding to the shaded areas in Figure 
4. Note how the p value calculation also considers bor-
derline cases in which the bootstrap means are exactly 
equal to the null value. This is done to handle the type 
of situation we are dealing with in our simple example: 
The bootstrap means of a small number of integer values 
can take only a limited number of unique values (Fig. 
1). A similar situation occurs when quantiles (e.g., 
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Fig. 1.  The first 50 bootstrap means for our example. The thick gray horizontal line marks 
the sample mean (3.5).
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Fig. 2.  Density plot of 1,000 bootstrap means for our example. The 
thick gray vertical line marks the sample mean.
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medians) are estimated from relatively small sample 
sizes or when results have been rounded.

After computing the smallest proportion (area) in the 
density plot, we multiply it by 2 to obtain the p value 
(which is .155 in our example). Intuitively, the bootstrap 
p value reflects how deeply the null value is nested inside 
the bootstrap distribution; in other words, the bootstrap 
p value is related to how close the null value is to the 
center of the bootstrap distribution. If the null value is 
completely outside the bootstrap distribution, then the p 
value is 0; if the null value is exactly at the center of the 
bootstrap distribution, then the p value is 1.

Confidence interval coverage  
and robust estimation

It is important to consider how the percentile bootstrap 
performs in various situations and how it compares with 

other methods. This topic has received a lot of attention 
in many books and articles (see the introduction and 
the Conclusion section), and we cannot do it justice 
here. However, it is worth exploring a simple situation 
to learn a bit more about the percentile bootstrap in 
particular, and how to set up simulations in general 
(interested readers can find much more information 
about conducting simulation studies in Morris et  al., 
2019). Let us consider a simple simulation to check the 
probability coverage of confidence interval methods; 
that is, we want to find out how often 95% confidence 
intervals (from many repeated experiments) include the 
true population mean. By definition, if we compute 95% 
confidence intervals, about 95% of such intervals should 
contain the population mean (Greenland et al., 2016). 
We set up our simulation using this code:

set.seed(666) # reproducible results
nsim <- 5000 # simulation iterations
nsamp <- 30 # sample size
alpha <- 0.05 # alpha level
nboot <- 2000 # number of bootstrap 
samples

pop <- rlnorm(1000000) # define 
lognormal population

pop.m <- mean(pop) # population mean
ptrim <- 0.2 # proportion of trimming
pop.tm <- mean(pop, trim = ptrim)  
# population 20% trimmed mean

The simulation has 5,000 iterations, which is sufficiently 
high to give informative results (we are effectively run-
ning 5,000 simulated experiments!). The sample size is 
30, which seems reasonably high for a psychology 
experiment. A more systematic simulation should include 
sample size as a parameter (see examples of such simu-
lations in Rousselet & Wilcox, 2020a; Wilcox & Rousselet, 
2018). The population is log-normally distributed and 
is created outside the simulation loop, by generating a 
very large number of random observations using  
pop <- rlnorm(1000000). An alternative is to gener-
ate the random numbers directly inside the loop by using  
samp <- rlnorm(nsamp). Either way, the simulation 
involves sampling with replacement, just as in the boot-
strap. The log-normal distribution is one of many skewed 
mathematical distributions, and it provides a good fit to 
many naturally occurring distributions of observations 
(Limpert & Stahel, 2017). It serves to illustrate what can 
happen in general when skewed distributions are sam-
pled. Other shapes could be used too, if some domain-
specific information is available. For instance, ex-Gaussian 
distributions do a good job at capturing the shape of 
reaction time distributions (Matzke & Wagenmakers, 
2009; Rousselet & Wilcox, 2020a).

L = 2.17 U = 4.83
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Fig. 3.  The bootstrap 95% confidence interval for our example. The 
interval is depicted as an orange bar, with labels for the values of the 
lower (L) and upper (U) bounds.
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Fig. 4.  The bootstrap p value for our example, given that the null 
value of the population mean is 2.5.
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In addition to the population mean, we define the 
population 20% trimmed mean, which we estimate in 
our simulation for comparison with the mean. The 
trimmed mean is a robust measure of central tendency 
(Wilcox, 2017); that is, this is an estimator that is not 
overly influenced by outliers. For 20% trimming, it is 
computed by sorting the observations, discarding the 
lowest and highest 20% of values (40% in total), and 
averaging the remaining values. Trimmed means are very 
effective at attenuating the influence of the tails of dis-
tributions, which can have a strong effect on the means. 
Note that population means and trimmed means differ 
and are estimated independently in the simulation: That 
is because the sample mean is used to make inferences 
about the population mean, whereas the sample trimmed 
mean is used to make inferences about the population 
trimmed mean. The trimmed mean is not a substitute for 
the mean, as it addresses a different question about the 
data; on the other hand, the mean is typically of little 
value in the presence of outliers. Here is the rest of the 
simulation code:

ci.coverage <- matrix(NA, nrow = 
nsim, ncol = 3) # declare matrix of 
results

for(S in 1:nsim){ # simulation loop
samp <- sample(pop, nsamp, replace = 
TRUE) # random sample from 
population

# Mean + t-test
ci <- t.test(samp, mu = pop.m)$conf.
int # standard t-test equation

ci.coverage[S,1] <- ci[1]<pop.m && 
ci[2]>pop.m # CI includes 
population value?

# create matrix of bootstrap samples
boot.mat <- matrix(sample(samp, size 
= nsamp*nboot, replace = TRUE), 
nrow = nboot)

# Mean + bootstrap
ci <- quantile(apply(boot.mat, 1, 
mean), probs = c(alpha/2, 
1-alpha/2))

ci.coverage[S,2] <- ci[1]<pop.m && 
ci[2]>pop.m # CI includes 
population value?

# 20% Trimmed mean
ci <- quantile(apply(boot.mat, 1, 
mean, trim = ptrim), probs = 
c(alpha/2, 1-alpha/2))

ci.coverage[S,3] <- ci[1]<pop.tm && 
ci[2]>pop.tm # CI includes 
population value?

}
apply(ci.coverage, 2, mean) # average 
across simulations for each method

[1] 0.877 0.872 0.946

In the simulation, we sample with replacement from the 
population defined in the previous code chunk. In a 
simulation, one knows exactly what to expect, so one 
can determine whether a method does what it is sup-
posed to do. Here, for each random sample, we compute 
a 95% confidence interval for the mean using both the 
standard t-test equation and the bootstrap. For compari-
son, we also look at the bootstrap confidence interval 
for the 20% trimmed mean. We determine whether each 
confidence interval includes the population value. For 
the t test, this is the case in 87.7% of simulated experi-
ments. A similar coverage probability is obtained with 
the percentile bootstrap: 87.2%. Thus, when one is sam-
pling from a skewed distribution and inferences are made 
on the mean, 95% confidence intervals can actually be 
88% confidence intervals! For inferences made on the 
20% trimmed mean, the coverage is 94.6% in our simula-
tion, much closer to the nominal level. These results 
confirm the well-known fact that the percentile boot-
strap should not be used to make inferences about the 
mean because it leads to inaccurate confidence intervals 
when distributions are skewed or outliers are present 
(although it does not perform worse than standard para-
metric confidence intervals in such situations; alternative 
bootstrap methods are mentioned in the Conclusion sec-
tion). More generally, using the trimmed mean instead 
of the mean can boost statistical power in many situa-
tions (Wilcox, 2017; Wilcox & Rousselet, 2018).

Comparison of Two Independent Groups

We now apply the bootstrap to the comparison of results 
from two independent groups. Suppose we collected 
response times from two groups, as illustrated in Figure 
5. Here are the sorted rounded values from Group 1  
(n1 = 50):

300 315 325 332 333 336 342 352 354 
358 362 364 366 371 372 374 379 381 
381 387 387 388 389 389 390 391 394 
395 398 400 402 402 403 404 406 415 
418 431 432 445 448 460 461 474 479 
487 487 505 540 579
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And here are the sorted rounded values from Group 2 
(n2 = 70):

316 343 349 362 363 388 390 397 397 
401 406 411 424 429 434 443 445 445 
449 450 451 452 454 455 458 459 460 
461 462 464 467 470 471 473 474 479 
479 479 485 490 499 506 508 512 512 
516 516 516 521 525 527 534 538 541 
545 548 554 568 570 574 578 580 583 
594 604 609 610 614 614 717

The two samples seem to differ in location and in spread: 
Responses tend to be slower and more spread out in 
Group 2 relative to Group 1. First, we make inferences 
about the locations using the 20% trimmed mean and 
the percentile bootstrap.

Difference in location

Here is the code implementing the bootstrap sampling:

nboot <- 2000 # number of bootstrap 
samples

ptrim <- 0.2 # proportion of trimming
# bootstrap sampling independently 
from each group

boot1 <- matrix(sample(g1, size = 
n1*nboot, replace = TRUE), nrow = 
nboot)

boot2 <- matrix(sample(g2, size = n2*nboot, 
replace = TRUE), nrow = nboot)

# compute trimmed mean for each group 
and bootstrap sample

boot1.tm <- apply(boot1, 1, mean, 
trim = ptrim)

boot2.tm <- apply(boot2, 1, mean, 
trim = ptrim)

# get distribution of bootstrap 
differences

boot.diff <- boot1.tm - boot2.tm

For two independent groups, bootstrap samples are gen-
erated independently from each group. This is an impor-
tant principle of the bootstrap: The sampling follows the 
original data-acquisition process. In our example, Group 
1 has a sample size of 50, whereas Group 2 has a sample 
size of 70. So, for each bootstrap, we sample with 
replacement 50 observations from Group 1 and 70 obser-
vations from Group 2, we compute the 20% trimmed 
mean for each group, and then we compute the differ-
ence between the groups. Figure 6 illustrates the distri-
bution of 2,000 bootstrap differences, boot.diff, with 
the associated 95% confidence interval.

The 95% confidence interval for the difference 
between the 20% trimmed means is computed like this:

alpha <- 0.05
ci <- quantile(boot.diff, probs = 
c(alpha/2, 1-alpha/2))

round(ci, digits = 1)
2.5% 97.5%
-113.7 -68.2

The confidence interval, [−114, −68], is compatible with 
a large range of negative values, suggesting that Popula-
tion 2 is slower than Population 1. The confidence interval 
does not include zero, so the p value is less than .05, as 
computed using the code we have already presented:

null.value <- 0 # null value
pval <- mean(boot.diff < null.value) +  
mean(boot.diff == null.value)*0.5

pval <- 2*(min(pval,1-pval))
pval
[1] 0

Group 1 Group 2

0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700

Response Time (ms) Response Time (ms)

Fig. 5.  The samples from two independent groups in our example. The black vertical lines indicate the sample quartiles. Sample size is 50 
in Group 1 and 70 in Group 2.
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More generally, a confidence interval can be consid-
ered an inverted hypothesis test: A 95% confidence inter-
val, for example, contains all the hypotheses for which 
the p value is more than .05 (Greenland et al., 2016).

Difference in spread

We can also use the bootstrap to investigate differences 
in spread between the two groups. Instead of the usual 
standard deviation, here we use a robust estimator of 
variability, the median absolute deviation from the 
median (MAD). We can directly compute the MAD for 
each of the bootstrap samples we have already 
generated:

boot1.mad <- apply(boot1, 1, mad)
boot2.mad <- apply(boot2, 1, mad)
boot.diff <- boot1.mad - boot2.mad

The bootstrap distribution of differences between 
MADs is illustrated in Figure 7. We can use the same 
snippets of code we used previously to compute the 
confidence interval and the p value for the population 
difference, so we do not repeat them here. Given our 
bootstrap model, the confidence interval suggests that 
a large range of population differences is compatible 
with the data. These differences are mostly negative, 
which suggests that Population 2 might be more spread 
out than Population 1 (p = .083).

Conclusion

This Tutorial just scratches the surface of what is pos-
sible with the bootstrap. Users might be particularly 
interested in applications to correlations (Pernet et al., 
2013) or analysis of variance, analysis of covariance, and 

regression (Field & Wilcox, 2017; Wilcox, 2017). The 
companion R Notebook includes code to make infer-
ences about correlation coefficients and their differ-
ences, for instance. Also, unlike the t test, the bootstrap 
can be combined with many robust measures of central 
tendency (e.g., median, trimmed means, M-estimators), 
and thus frees users from the tyranny of the mean. Com-
bined with quantile estimators, the bootstrap can be 
used to make inferences about multiple parts of distribu-
tions and provides a far deeper understanding of how 
distributions differ than is possible with conventional 
methods (Rousselet et al., 2017). The bootstrap can also 
be used to estimate bias and standard errors, topics that 
are covered in other tutorials (Rousselet et  al., 2019; 
Rousselet & Wilcox, 2020a).

Although the examples covered in this Tutorial may 
be relatively simple, the fundamental idea of sampling 
with replacement does scale up easily to more complex 
situations. Learning about sampling with replacement 
also means learning about simulations in an intuitive 
way. This knowledge can then be put to use in other 
contexts, for instance, to compare the behavior of dif-
ferent statistical methods, as we have shown. Because 
the bootstrap is intuitive, is easy to code, and provides 
an ideal stepping stone to learn about simulations, we 
believe, as other authors have argued, that it should be 
at the core of modern statistical training in psychology 
(Steel et al., 2019).

Moreover, a few important points about the bootstrap 
should be kept in mind. No matter what type of boot-
strap is used, the core assumption is that the sample 
data can be used to approximate the shape of sampling 
distributions (plug-in principle); therefore, samples must 
be sufficiently large to provide enough information 
about the shape of these distributions. When sample 
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Fig. 6.  The bootstrap distribution of the differences between the 
20% trimmed means in our example. The 95% confidence interval is 
depicted as an orange bar, with labels for the values of the lower (L) 
and upper (U) bounds.
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Fig. 7.  The bootstrap distribution of differences between the median 
absolute deviations from the median (MADs) in our example. The 95% 
confidence interval is depicted as an orange bar, with labels for the 
values of the lower (L) and upper (U) bounds.



Percentile-Bootstrap Primer	 9

sizes are too small, no amount of bootstrapping can lead 
to reliable inferences because the skewness and the tails 
of certain distributions cannot be captured properly. And 
there is no safe guideline about sample sizes: Obviously, 
the larger the better, and one can use simulations to 
assess the performance of a particular method for dif-
ferent sample sizes (Rousselet et al., 2019).

Among the various types of bootstrap methods, the 
percentile bootstrap, covered here, works well in various 
situations, for instance, when making inferences about 
trimmed means, quantiles, or correlation coefficients 
(Rousselet et  al., 2017, 2019; Wilcox, 2017). However, 
percentile-bootstrap confidence intervals tend to be 
inaccurate in some situations because the bootstrap sam-
pling distribution is skewed (asymmetric) and biased 
(consistently shifted away from the population value in 
one direction). To address these problems, two major 
alternatives to the percentile bootstrap have been sug-
gested: the bootstrap-t and the bias-corrected and accel-
erated (BCa) bootstrap (Efron & Tibshirani, 1994), both 
of which are implemented in the boot package, for 
instance. However, no method dominates. For instance, 
whereas the bootstrap-t can lead to more accurate con-
fidence intervals for the mean and some trimmed means 
than the percentile bootstrap does, a percentile boot-
strap is recommended for inferences about the 20% 
trimmed mean (see simulation examples in Rousselet 
et al., 2019). And in some situations, the BCa approach 
can be unsatisfactory, especially for relatively small sam-
ple sizes (Good, 2005).

Because of all these options, to avoid confusion regard-
ing reported bootstrap results, we recommend clearly 
stating which bootstrap method was used, in conjunction 
with which estimator (e.g., the percentile bootstrap with 
a 20% trimmed mean), and justifying these choices. We 
also recommend reporting the full bootstrap distribution 
(and the code), as it contains much more information than 
the confidence interval and the p value.

Finally, although the bootstrap was developed as a 
frequentist technique, there are interesting similarities 
with Bayesian statistics: Bootstrap distributions have 
been compared with Bayesian posterior distributions 
(Bååth, 2015; Rubin, 1981), and sampling with replace-
ment from Bayesian posterior distributions is a common 
practice. So learning the bootstrap is also a very useful 
first step toward learning more advanced techniques.
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Note

1. The sampling distribution of a statistic is the distribution 
obtained after performing a very large number of experiments 
for a given sample size, calculating the same statistic for each 
experiment (Baguley, 2012; Dienes, 2008; Rousselet et al., 2019).
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