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Hundreds of articles in statistical journals have pointed 
out that standard analysis of variance, Pearson product- 
moment correlations, and least squares regression can 
be highly misleading and can have relatively low power 
even under very small departures from normality. In 
practical terms, psychology journals are littered with 
nonsignificant results that would have been significant if 
a more modern method had been used. Modern robust 
techniques, developed during the past 30 years, provide 
very effective methods for dealing with nonnormality, 
and they compete very well with conventional procedures 
when standard assumptions are met. In addition, modern 
methods provide accurate confidence intervals for a 
much broader range of situations, they provide more 
effective methods for detecting and studying outliers, and 
they can be used to get a deeper understanding of how 
variables are related. This article outlines and illustrates 
these results. 

ll psychologists are taught the standard t test, the 
analysis of variance (ANOVA) F test, Pearson 

roduct-moment correlation, and least squares 
regression. When I was in graduate school, I was assured 
that these methods were robust when distributions were 
not normal or when groups had unequal variances. In 
essence, I was led to believe that by the year 1955, all 
practical problems had been addressed. Looking at vari- 
ous psychology journals, this view still reflects conven- 
tional wisdom. However, a more accurate description of 
standard hypothesis-testing methods is that they are ro- 
bust when there are no differences. 

As hundreds of articles in statistical journals have 
pointed out and for reasons summarized in several books 
(e.g., Birkes & Dodge, 1993; Hampel, Ronchetti, Rous- 
seeuw, & Stahel, 1986; Hoaglin, Mosteller, & Tukey, 
1983, 1985; Huber, 1981; Staudte & Sheather, 1990; Wil- 
cox, 1996, 1997a), standard methods are not robust when 
differences exist or when there is an association between 
random variables. In particular, arbitrarily small depar- 
tures from normality result in low power; even when 
distributions are normal, heteroscedasticity can seriously 
lower the power of standard ANOVA and regression 
methods. The practical result is that in applied work, 
many nonsignificant results would have been significant 
if a more modern method, developed after the year 1960, 

had been used. A related and perhaps more serious con- 
cern is that standard confidence intervals and measures 
of effect size can be extremely misleading under small 
departures from normality. Another advantage of modern 
techniques is that they provide more effective methods 
for identifying and studying outliers--outliers being any 
unusually large or small values among a batch of 
numbers. 

Of course, some statistics books, aimed at psycholo- 
gists, admit that problems might arise when one is using 
standard techniques, and they offer advice about how to 
proceed. Typically, a nonparametric method is suggested. 
However, most of the standard nonparametric methods 
are now obsolete. That is, modern rank-based methods 
have something to offer, but they are not known by the 
typical researcher trying to keep current in his or her 
own area of expertise. This problem reflects the more 
general concern that there is an ever widening gap be- 
tween modern statistical methods and techniques used by 
psychologists. 

More than 30 years ago, theoretical methods were 
developed for dealing with problems that arise under 
small departures from normality. Of particular note is the 
theory of robustness developed by Huber and Hampel 
and summarized in Huber (1981) and Hampel et al. 
(1986). These methods simultaneously deal with prob- 
lems that are due to small changes in observed values. 
That is, typical statistics such as the sample mean, the 
sample variance, the Pearson product-moment correla- 
tion, and the least squares estimate of regression parame- 
ters can be drastically affected by a single unusual value, 
and modern robust methods are designed to deal with 
this problem. Initially, it was unclear how to test hypothe- 
ses and to compute confidence intervals by using modern 
estimators, but today this task is easily done. It turns out 
that even when there are no outliers, but distributions are 
skewed, modern methods offer a substantial advantage 
over standard techniques. Despite this advantage, most 
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applied researchers remain unaware of  modem tech- 
niques and the practical advantages they offer. Another 
problem is that most quantitative articles tend to be too 
technical for applied researchers who do not routinely 
work with theoretical statistics. My goal in this article is 
to give a very nontechnical description of the problems 
that arise and to illustrate that modern methods can make 
a huge difference in applied work. 

In terms of power and accurate probability coverage, 
standard ANOVA and regression methods are affected by 
three characteristics of data that are commonly seen in 
applied work: skewness, heteroscedasticity (unequal vari- 
ances among groups), and oufliers. Each of these charac- 
teristics, irrespective of the other two, can substantially 
diminish the chances of (a) detecting true differences 
between groups, (b) detecting true associations among 
random variables, and (e) obtaining accurate confidence 
intervals for the parameters of  interest. Taken together, 
these three features become a very serious concern. Prob- 
lems with common measures of effect size arise as well. 

Problems With Student's t Test 
I begin with a seemingly simple problem: Choose a mea- 
sure intended to reflect the typical person under study 
and compute a confidence interval for it. Of  course, the 
usual measure is the population mean (#), the average of 
all the individuals if only they could be measured. One 
cannot measure all persons that are of interest, so one 
estimates the population mean with the sample mean (M). 
The standard 1 - ~ confidence interval for the population 
mean is 

M+-(tl-~e2)(S~nn) , (1) 

where SD is the sample standard deviation based on a 
random sample of  n participants, and tl ~2 is the 1 - 
od2 quantile of  Student's t distribution with n - 1 degrees 
of  freedom. From basic principles, if  the goal is to test 
the null hypothesis that ~z = 10, say, then the null hypothe- 
sis would be rejected if the confidence interval given by 
Equation 1 does not contain the hypothesized value of 
10. Two serious problems arise when this method is ap- 
plied to data, namely, heavy-tailed distributions and 
skewness, and new problems are introduced when atten- 
tion is turned to comparing two or more groups. A partic- 
ularly serious problem is having unequal varimaees that 
can lower power. 

First, consider how heavy-tailed distributions and 
outliers affect power - - t he  probability of rejecting when 
in fact the null hypothesis is false. Power is related to 
the variance of the sample mean, which is a2/n, where 
~r 2 is the population variance. Of course, one estimates 
the population variance with the sample variance (s2). 
From basic principles, if  the population variance is 
known, then the confidence interval for the population 
mean becomes 

O" 

M + Zl ~/2 ~nn' (2) 

where z is the 1 - ~/2 quantile of a standard normal 
distribution. As most introductory books on statistics 
point out, as the population variance goes up, power goes 
down. 

Temporarily assume that observations are randomly 
sampled from a symmetric distribution (of course, asym- 
metric distributions are important, but I focus on one 
problem at a time). When one is sampling from a normal 
distribution, power is best when one uses the sample 
mean in conjunction with Equation 1 or Equation 2. The 
reason is that among all of  the unbiased estimators of  
the population mean, none has a smaller variance than 
the sample mean. 

I now illustrate how small departures from normal- 
ity can substantially lower power. The classic illustration 
is based on the mixed or contaminated normal distribu- 
tion. Let X be any random variable. Suppose that for a 
randomly sampled participant, there is a .9 probability 
that an observation comes from a standard normal distri- 
bution and a .  1 probability of  sampling from a normal 
distribution with mean/z  = 0 and standard deviation cr 
- 10. This is called a mixed normal distribution because 
its distribution is a mixture or weighted sum of two 
normal distributions, namely, .9qb(x) + . I ¢(x/10), where 

is the standard normal distribution. Figure 1 shows 
the standard normal distribution and the mixed normal 
distribution just described. This is an example of  a heavy- 
tailed distribution, lr~eaning that the tails are " thicker" 
than a normal distribution, which in turn means that outli- 
ers are more likely than situations where a distribution 
is normal. 

Note that the normal and mixed normal distributions 
appear to be very similar. On the basis of  any of several 
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Normal and Contaminated Normal Distributions 
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Note. The solid line is a standard normal distribution, and the dashed line is a contaminated normal distribution. 

measures of the global difference between distributions, 
this is indeed the case. The most common measure of 
the global difference between two distributions is the 
Kolmogorov distance, which is the maximum value of 
the absolute difference between the two cumulative distri- 
butions. If distributions are identical, then this distance is 
zero, and the maximum distance is one. For the standard 
normal and mixed normal distributions considered here, 
the distance is very small (less than .04), indicating that 
the distributions are similar. Because the Kolmogorov 
distance is small, the Kolmogorov test for normality can 
have low power, making it unlikely that an applied re- 
searcher would detect any departure from normality. 
However, for the standard normal distribution, cr 2 = 1.0, 
and for the mixed normal distribution, cr 2 = 10.9! Be- 
cause the distribution of the mixed normal is the weighted 
sum of two normal distributions, the variance tums out 
to be .9 + .1(102) = 10.9 (see Wilcox, 1997a, for more 
details). The contaminated normal distribution illustrates 
that the population variance is not robust, meaning that 
a small change in the tails of a distribution can drastically 
alter the value of the population variance. Put another 
way, if distributions are normal, one has some sense of 
how two distributions will appear if one is given their 
variances, but if one allows the possibility that distribu- 

tions are not normal, knowing the variance alone, one 
cannot know how much the distributions differ as mea- 
sured by the Kolmogorov distance. Also, the population 
variance is not robust when distributions are skewed, 
meaning that small changes in the tail of a skewed distri- 
bution can result in large changes in the population 
variance. 

An important point is that modern methods do not 
assume or require that distributions are mixed normals. 
Rather, mixed normals illustrate the very general concern 
that very small departures from normality can inflate 
the population standard deviation. In consequence, the 
squared standard error of the sample mean (cr2/n) can 
become inflated with small departures from normality, 
and power can be drastically lowered. For example, sup- 
pose that for two independent groups with normal distri- 
butions, the difference between the means is #~ - #2 = 
1 and both groups have variance equal to one. The left 
panel of Figure 2 shows the two distributions. Then, with 
n = 25 and a = .05, power is .96 when using Student's 
test for means. The right panel of Figure 2 shows two 
contaminated normals; again with #1 - #2 = 1, there is 
little visible difference from the left panel, but now power 
is .28. Under slight departures from normality, potential 
discoveries will be lost! What is needed is an estimator 
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Figure 2 
Power and Nonnormality 
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that performs about as well as the sample mean when 
distributions are normal but continues to perform well 
(have a relatively low standard error and high power) 
under slight departures from normality toward any 
heavy-tailed distribution. 

Table 1 shows the variance of several alternative 
estimators when sampling from one of four distributions, 
where M, indicates a trimmed mean with 10% or 20% 
trimming,/2,, is what is called an M estimator with Hu- 
ber 's  k~ (Huber, 1981), and 8.5 is an estimator of the 
median derived by Harrell and Davis (1982). A one- 
wild distribution means that sampling is from a normal 
distribution and one of the observations is multiplied by 
10. A slash distribution starts with a standard normal 

"roble 1 
Variances of Selected Estimators (n = 1(9) 

Distribution 

Estimator Normal Lognormal One-wild Slash 

M .1000 .4658 1.0900 
Mt(10%) .1053 .2238 0.1432 
Mr(20%) .1133 .1775 0.1433 0.9649 
Mdn .1383 .1727 0.1679 0.7048 
~m(Huber) .1085 .1976 0.1463 0.9544 
0.5 .1176 .1729 0.1482 1.4731 

and divides by an independent, uniform random variable. 
Both the one-wild and slash distributions are symmetric 
with heavier than normal tails. 

Ideally, the variance of an estimator would be as 
small or smaller than any other estimator that might be 
used because this would mean relatively short confidence 
intervals and high power. None of the estimators in Table 
1 achieve this goal primarily because nothing can beat the 
sample mean when sampling from a normal distribution. 
However, if  the goal is to avoid complete disaster, mean- 
ing that the standard error should not be large relative to 
some other estimator that might be used, the sample mean 
is the least satisfactory. The two estimators that perform 
relatively well are the 20% trimmed mean and the M 
estimator (/2,,). 

Both trimmed means and M estimators use a type 
of trimming. That is, extreme values are removed when 
a measure of location is being estimated. A trimmed mean 
is computed by removing a certain percentage of the 
largest and smallest observations and averaging the val- 
ues that remain. The proportion of observations trimmed 
is fixed in advance. The term 10% trimming means that 
10% of the largest observations, as well as 10% of the 
smallest observations, are trimmed. If  one has 10 obser- 
vations and the largest value is 35 and the smallest value 
is 6, 10% trimming consists of removing these two values 
and averaging the rest. (Some articles call this 20% trim- 
ming instead.) In contrast, M estimators empirically de- 
termine whether an observation is an outlier, and if it is, 
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adjustments for it are made. M estimators include the 
possibility of no trimming, in which case /~m = M. When 
one is using trimmed means, symmetric trimming is best 
when the goal is to achieve accurate confidence intervals. 
M estimators allow the possibility of  asymmetric trim- 
ming (one tail might be trimmed whereas the other tail 
is not), but this leads to technical complications that must 
be handled with special techniques. I will not burden the 
reader with the details of how to compute an M estimator, 
but it is easy to compute and is easily applied to data by 
using the software in the books by Wilcox (1996, 1997a). 
It should be noted that for symmetric distributions, all 
of  the estimators in Table 1 estimate the mean (~). There 
are some obvious concerns about trimming, and each is 
discussed in due course. 

Of course, the distributions in Table 1 are artificial. 
Can it really make a difference which estimator one uses 
when working with real data? Consider data from a self- 
awareness study (viz., Wilcox, 1996, Table 8.11). For the 
first group, the estimated standard error of the sample 
mean was 136 versus 56 for the 20% trimmed mean and 
54 for /2m. This means that a confidence interval, based 
on trimmed means for example, will have less than half 
the length of the confidence interval based on means, 
which means that using trimmed means can result in 
much higher power. For these data, the usual t test had 
a significance level of  .47, but Yuen's (1974) test for 
trimmed means had a significance level of .052. If  a more 
modern method for comparing trimmed means were used 
(Wilcox, 1997a, section 5.3.2), one would reject at the 
.05 level. Experience suggests that in some cases, the 
standard error of the sample mean will be a bit smaller 
than the standard error of  these other estimators, but the 
sample mean seems to rarely, if ever, offer a substantial 
advantage, and it is fairly common for trimmed means 
and M estimators to have substantially smaller standard 
errors. Ignoring the potential problems with means is not 
in the interest of  applied researchers or psychology as a 
science. 

It is stressed that there are formal methods and crite- 
ria for deriving location estimators with standard errors 
that are relatively insensitive to slight changes in a distri- 
bution. As a special case, their standard errors are not 
overly affected by slight departures from normality. In 
light of  these results, the preceding illustration is not 
surprising and is much more common than psychologists 
are trained to expect. One reason is that outliers occur 
in situations where they might seem unlikely. Experience 
indicates that more often than not, outliers will be found. 
A boxplot (e.g., Hoaglin et al., 1983; Wilcox, 1996) can 
be used to check for outliers, but even if no outliers are 
detected, modern methods can be important, as I explain 
later. 

How do the trimmed mean and the M estimator 
achieve such low standard errors? As previously noted, 
both use a type of trimming, but this raises some obvious 
concerns that must be addressed. The first point that 
needs to be stressed is that in samples of observations, 

outliers inflate the estimated standard error of the sample 
mean. That is, outliers can inflate the sample variance, 
which in turn can mean relatively long confidence inter- 
vals and relatively poor power. Only one outlier can de- 
stroy power. By incorporating some mechanism into an 
estimator that reduces or eliminates the effects of  outliers, 
relatively low standard errors can be achieved. 

The more one trims, the more outliers one can have 
among n randomly sampled observations without getting 
relatively high standard errors. (This is not completely 
obvious on the basis of the information given here, but 
the standard errors of the trimmed mean and the M esti- 
mator have been derived, and examining these expres- 
sions verifies the statement just made.) For example, if 
n = 50 and 10% trimming is used, there can be as many 
as 5 outliers without getting an inflated standard error, 
but 6 outliers might cause practical problems. Similarly, 
the 20% trimmed mean can handle up to 10 outliers, or 
20% of the sample size. The M estimators and the median 
can handle situations in which up to half of the observa- 
tions are outliers, but if sampling is from a normal distri- 
bution, the median performs poorly, relative to no trim- 
ming, in terms of its standard error. 

But Outliers Are Important, Interesting, and 
Informative 

One concern about trimming is that outliers can be inter- 
esting and informative. Modern robust methods do not 
deny this, this is assumed to be evident, and a great deal 
of effort has been made in finding effective methods for 
detecting outliers. Moreover, it turns out that in terms of 
identifying and studying outliers, complete reliance on 
the mean and the variance is relatively ineffective. But 
more modern methods, based on robust measures of loca- 
tion and scale, have much to offer. That is, what is needed 
when one is trying to identify and study unusual observa- 
tions are measures of  location and scale that are not 
themselves affected by outliers. When dealing with re- 
gression, again, modern methods that are insensitive to 
unusual points play a major role in studying outliers, as 
I later illustrate. 

Detecting outliers turns out to be especially difficult 
when one is dealing with multivariate data, but reason- 
ably effective methods have been derived (e.g., Barnett & 
Lewis, 1994; Rousseeuw & van Zomeren, 1990; Wilcox, 
1997a). A natural strategy is to simply apply a boxplot 
to each of the variables, but this can be unsatisfactory, 
and in fact it can miss outliers because it does not take 
into account the overall structure of the points. For exam- 
ple, a boxplot was applied to five variables taken from a 
study of reading by Wilcox and Doi (1996). A total of 
10 outliers was detected, but when the more modern 
method by Rousseeuw and van Zomeren is applied, 20 
outliers are detected instead. When dealing with multivar- 
iate data, a particularly difficult aspect of  the problem is 
finding measures of location and scale that (a) are insensi- 
tive to outliers and (b) simultaneously satisfy additional 
properties that allow one to take into account the overall 
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structure of the points. From a practical point of  view, 
solutions have been derived and can be easily applied 
with existing software (Wilcox, 1997a). 

To elaborate a little, suppose one observes the values 
2, 3, 4, 5, 6, 7, 8, 9, 10, and 50 and decides that an 
observation is an outlier if it is more than two standard 
deviations from the mean. For these data, [M - 501 -- 
2.8 SD, where SD is the sample standard deviation. Thus, 
the value 50 would be declared an outlier. But suppose 
another outlier was added by changing the value from 
10 to 50. Then, IM - 501 = 1.88 SD, so 50 would not 
be declared an outlier, yet surely 50 is unusual versus the 
other values. If  the two largest values in this last example 
were increased from 50 to 100, then [M - 100[ -- 1.89 
SD; the value 100 still would not be declared an outlier. 
I f  the two largest values were increased to 1,000, even 
1,000 would not be flagged as an outlier! The problem 
is that both the sample mean and the sample standard 
deviation are being inflated by the outliers, which in turn 
masks their presence. 

Although outliers are interesting, if the g0al is to 
achieve high power under nonnormality or to find a mea- 
sure of  location that reflects the typical participant when 
distributions are skewed, outliers wreak havoc. A natural 
reaction is that trimming could not possibly work because 
information is being lost somehow, but a more precise 
description is that outliers make it difficult to get a rela- 
tively short confidence interval for the population mean. 
The reason trimming works is related to the erroneous 
strategy of throwing away outliers and applying standard 
methods to the data that remain. As advocated here, trim- 
ming is not simply the throwing away of extreme values 
and then applying standard methods. 

Why Not Discard Outliers and A~ply Standard 
Methods to the Remaining Data. 
A common and seemingly natural strategy is to search 
for outliers, to remove any that are found, and then to 
apply standard hypothesis-testing methods to the data that 
remain. This approach fails because it results in using 
the wrong standard error. Briefly, if  extreme values are 
thrown out, the remaining observations are no longer 
independent, so conventional methods for deriving ex- 
pressions for standard errors no longer apply. This result 
is well-known in mathematical statistics (e.g., Hogg & 
Craig, 1970), and a relatively nontechnical explanation 
is given in Wilcox (1997a), but perhaps it is too technical 
to give here. Instead, I give a different and informal expla- 
nation that also sheds light on why trimming can reduce 
the standard error of an estimator. 

Suppose one randomly samples five observations, 
say X1, X2, X3, X4, and Xs, and then one puts these five 
observations in order, yielding X(1 ) ~ X(2) ° ° ° ~ X(5 ). Sup- 
pose this process is repeated many times. If, for example, 
the fourth and fifth largest values among five randomly 
sampled observations are independent, then the correla- 
tion between these two numbers should be zero, and a 
scatterplot of  the points (the sampling distribution of the 

pairs of  points X(4 ) and X(5)) should show no visible asso- 
ciation, only a random pattern. To illustrate that they 
are dependent, five observations were generated from a 
standard normal distribution, and the two largest observa- 
tions were recorded. This process was repeated 500 
times, resulting in 500 pairs of  numbers, each pair repre- 
senting the fourth and fifth largest values among n = 5 
randomly sampled values. Figure 3 shows a scatterplot 
of the points. Clearly, there is an association, and the 
correlation is .60. Note that whatever the value is for the 
largest observation, X(5), X(4) m u s t  have a smaller value, 
which is why they are dependent. 

The ith largest observation, X(i), is called the ith 
order statistic. Another important point is that the vari- 
ance of the ith order statistic is not equal to the variance 
of the distribution from which it was sampled. X~), for 
example, does not have the same variance as X1; it is 
smaller. The reason is that large values for X(I~ are less 
likely than they are for X1 simply because X(1) is the 
smallest of  the five values. In the illustration, X1 has a 
variance of 1.0, but Xo) has a variance of approximately 
0.4. More generally, if X,~ is the ith largest observation, 
its variance is not 1.0, and it is correlated with the j th 
largest observation, Xo), for any i :~ j. 

Now the variance of the sample mean is derived 
from the result that if X~,. • . ,  X, are independent, 

VAR(~ Xi) = Z VAR(X~). 

That is, the variance of the sum is equal to the sum of 
the variances, and this plays a role in justifying s2/n as 
an estimator of the variance of the sample mean. But if 
the observations are correlated, this last expression no 
longer holds; the covariances among the observations 
must be taken into account. In the illustration, if  one 
discards the smallest and largest observations and sums 
those that remain, one gets X(z) + X(3) + X(4), and the 
average of these three numbers is an example of  a 
trimmed mean. But the variance of this sum is not easily 
determined because the individual terms do not have the 
same variance as the distribution from which they were 
sampled, and the covariances among these three random 
variables must be taken into account. Consequently, it is 
not readily apparent how to estimate the standard error 
of  the trimmed mean, and when M estimators are used, 
where the amount of trimming is empirically determined, 
additional complications are introduced. There are effec- 
tive methods for dealing with this problem of determining 
the standard error of an estimator when extreme values 
are discarded, but the details are too involved to be given 
here (see Staudte & Sheather, 1990; Wilcox, 1997a). The 
important point is that these methods are easily applied 
with existing software and they have great practical im- 
portance when one is dealing w i th  low power due to 
outliers. Even undergraduates taking an introductory sta- 
tistics course can learn how to do this by hand when 
working with trimmed means, but when using M estima- 
tors, a computer must be used. 
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F i g u r e  3 
Scatterplot of the Two Largest Observations (n = 5) 
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What If  Distributions Are Skewed or There Are 
No Outliers? 

A common misconception is that robust methods are 
appropriate only when distributions are symmetric, so by 
implication, standard methods should be used if distribu- 
tions are skewed. Another misconception is that if there 
are no outliers, modem robust methods offer no practical 
advantages. On the basis of  both theoretical and simula- 
tion results, modem methods give better results when 
distributions are skewed, whereas standard methods can 
fail miserably. In terms of  power, this is especially true 
when distributions have relatively light tails, meaning 
that outliers are relatively rare. In particular, standard 
methods can have peculiar power properties (power can 
go down as one moves away from the null hypothesis), 
confidence intervals can have probability coverage sub- 
stantially different f rom the nominal level, and the sample 
mean can poorly reflect the typical participant under 
study. 

To gain some insight as to why skewness can cause 
problems, suppose observations are randomly sampled 
from a lognormal distribution that is skewed. The t test 
is based on the assumption that 

T -  
S D  

has a Student 's t distribution with n - 1 degrees of  
freedom. In particular, T is assumed to have a symmetric 
distribution around zero. The left panel Of Figure 4 shows 
the actual distribution o f  T when n = 20. The solid line, 
symmetric around zero, shows the assumed Student 's t 
distribution, and as is evident, it differs substantially from 
the actual distribution o f  T. In fact, the mean of  T is 
approximately - 0 . 5 ,  not zero, as is commonly  assumed. 
(For nonnormal distributions, M and S D  are dependent, 
and this is why the mean of  T can differ f rom zero.) The 
result is that there are situations where power goes down 
as one moves away from the null hypothesis, the standard 
confidence interval for the population mean can have 
poor probability coverage, and control over the probabil- 
ity of  a Type I error can be poor. Of  course, increasing 
n improves matters, but how large must n be before T 
can be used? The right panel of  Figure 4 shows the 
distribution of  T when n = 100, where again sampling 
is f rom a lognormal distribution. Poor control over the 
probability of  a Type I error and unsatisfactory probabil- 
ity coverage are still problems. According to Westfall and 
Young (1993), even n = 160 is not large enough to elimi- 
nate problems, and it is unknown how large n must be 
so as to ensure good results with T. 

For example, suppose one wants the probability of  
a Type I error to be c~ = .05; one randomly samples n 
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F i g u r e  4 
Probability Density Function of Student's t When Sampling From a Lognormal Distribution 
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= 20 observations from a lognormal distribution having 
a mean of 1.649 and tests the null hypothesis that # > 
1.649. The actual probability of  a Type I error is .153. 
Increasing n to 160, the actual probability of  a Type I 
error drops to only .109. 

Theory states that as the probability of  sampling 
outliers goes down, or when the tails of  a distribution get 
thinner, the problems illustrated by Figure 4 get worse! 
Outliers are common when one is sampling from a log- 
normal distribution, so the illustrations just given are not 
based on an extreme case. The t test can be made even 
worse by sampling from a lighter tailed distribution. For 
example, Wilcox (1997a) reported situations where one 
tests at the .05 level but the actual probability of  a Type 
I error is .42. 

Yet another concern with skewed distributions is 
that the population mean or the sample mean might not 
provide a good reflection of the typical participant. Con- 
sider again the self-awareness data (Wilcox, 1996). The 
sample mean was 448, yet about 80% of the observations 
had values that were less than 448. That is, the data 
suggest that the mean was close to the .8 quantile. By 
trimming, one gets a measure closer to the bulk of the 
observations. For the data at hand, the median is 262, 
and the 20% trimmed mean is 283. 

How Much Trimming Should Be Used? 
When using trimmed means, one must first decide how 
much trimming should be done. This issue has been ex- 

amined from various perspectives, and a good choice for 
general use is 20%. Of course, this choice is not always 
optimal in terms of minimizing the standard error, but 
no trimming or 10% trimming can result in very poor 
power and highly inaccurate confidence intervals, 
whereas 20% trimming competes well with no trimming 
when distributions are normal. If  the criterion is accurate 
probability coverage, it is known that the more skewed 
a distribution happens to be, the more unsatisfactory the 
standard confidence interval for the mean becomes, par- 
ticularly in situations where outliers are unlikely to ap- 
pear. There are also theoretical and simulation results 
showing that the more one trims, the more accurate the 
probability coverage is, but one does not want to trim 
too much if one wants to avoid low power when distribu- 
tions are normal. 

An analogue of Student's t test has been derived 
for situations where a trimmed mean is used instead. It 
involves computing what is called the Winsorized vari- 
ance, which in turn is multiplied by a constant, the value 
of which depends on the amount of trimming used (for 
details, see, e.g., Wilcox, 1996, p. 118). Although trim- 
ming improves matters, practical problems remain. How- 
ever, both theory and simulations indicate that if one 
combines trimmed means with what is called the percen- 
tile-t bootstrap method, even better probability coverage 
can be obtained. Briefly, an analogue of the t test has 
been derived for trimmed means; the null distribution has 
approximately a Student's t distribution, but even better 
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approximations of  the null distribution can be obtained 
with a computer (for computational details, see Wilcox, 
1997a, section 4.3.1.). 

For example, it was previously pointed out that there 
are situations where one tests at the .05 level with Stu- 
dent's t, but the actual probability of a Type I error is 
.42. Switching to the analogue of Student's t for trimmed 
means, the actual probability of a Type I error is .063. 
I f  one uses a percentile-t bootstrap method with the 20% 
trimmed mean, the Type I error probability is .053. 

When two or more independent groups are com- 
pared, all of  the problems discussed so far remain, and 
there is the additional problem that unequal variances 
contribute to poor power and inaccurate confidence inter- 
vals. In fact, if there are unequal sample sizes and groups 
differ, there are general conditions under which the usual 
confidence interval for #~ - #2 (the difference between 
the means) has probability coverage that does not even 
converge to the nominal level as the sample sizes get 
larger (Cressie & Whitford, 1986). More precisely, Stu- 
dent's t in the two-sample case is assumed to approach 
a standard normal distribution as the sample sizes get 
large, so, in particular, its variance approaches 1.0. But 
if the variances corresponding to the two groups are un- 
equal, there are general conditions where the variance of 
Student's t statistic does not approach 1.0, contrary to 
what is commonly assumed. 

As another illustration, again consider the self- 
awareness data (Wilcox, 1996). I f  the means of the two 
groups are compared, the significance level is .47. When 
comparing 20% trimmed means (with Yuen' s [ 1974] test; 
see Wilcox, 1996, p. 138), the significance level drops 
to .0525, and if trimmed means are compared with a 
percentile-t bootstrap method, one rejects at the .05 level. 
Of  course, 20% trimmed means do not offer the most 
power in all si tuations--nothing d o e s - - b u t  this illus- 
trates that modem methods can result in a substantially 
different perspective about how two groups compare. 

What about M estimators? They compare fairly well 
with trimmed means in terms of controlling the probabil- 
ity of  a Type I error or achieving high power, but trimmed 
means perform well over a broader range of situations. 
However, when attention is turned to correlation and re- 
gression, M estimators have advantages over trimming. 
Interested readers can refer to Wilcox (1996, 1997a). 
Some illustrations of the practical advantages of  M esti- 
mators are given below. 

Note that for skewed distributions, trimmed means 
and M estimators are not estimating the same quantity 
as the sample mean, and perhaps there are situations 
where this offers an advantage to means, in terms of 
power. Although it is possible, this is relatively unlikely 
because trimmed means and M estimators usually have 
standard errors as small as or much smaller than the 
mean. Situations arise where comparing means results in 
a slightly lower significance level, but it is difficult to 
find situations where means are rejected at the .05 level 
and trimmed means are not. Presumably such situations 

a r i se - -aga in  no single method is pe r fec t - -bu t  it seems 
relatively easy to find situations where trimmed means 
have substantially lower significance levels. If  groups do 
not differ, it makes little difference which measure of 
location is used, and it is not surprising to find situations 
where methods based on means have lower significance 
levels. Of  course, one does not know whether they differ, 
but if they do, the choice of  an estimator might make a 
substantial difference. 

Other Issues 

A natural strategy is to test assumptions (normality and 
equal variances) and if they are not significant, to use a 
standard method. This strategy fails because conventional 
tests of  assumptions do not have enough power to detect 
situations where standard assumptions are unsatisfactory 
(e.g., Wilcox, 1996). The only known way of determining 
whether modem robust methods make a difference is to 
apply them to the problem at hand. 

Another reasonable suggestion is to transform the 
data, but simple transformations fail. For example, the 
common strategy of using the logarithm of all observa- 
tions does not always remove the effect of  outliers, and 
more sophisticated transformations have been shown to 
be unsatisfactory as well (Wilcox, 1996). 

Modem methods have been extended to one-way 
and higher designs, including repeated measures designs. 
It is hoped that as the number of  groups increases, some 
of the problems associated with Student's t become negli- 
gible, but the exact opposite is true. 

Although it is a seemingly rare event, a few re- 
searchers have the incorrect notion that modem robust 
methods are designed to find better estimates of the popu- 
lation mean, the population variance, and the population 
correlation. Generally, this is not of interest from a mod- 
em point of view because these parameters are not robust. 
That is, even if all participants could be measured, the 
resulting values could be misleading under arbitrarily 
small departures from normality. (An exception is when 
distributions are symmetric, in which case the goal is to 
find a good estimator of  the population mean, meaning 
that its standard error should not be affected by small 
changes in the distribution.) In the next section of this 
article, I elaborate on this important issue. 

What Is a Robust Parameter? 

For most applied researchers, it seems that the term ro- 

b u s t  means that a particular hypothesis-testing procedure 
controls the probability of a Type I error. Among modem 
statistical methods, it has a more general meaning that 
applies to both parameters and estimators. In terms of 
hypothesis testing, small changes in a distribution should 
not result in large changes in power or probability cover- 
age. As a special case, when one is sampling from normal 
distributions, small shifts away from normality should 
not drastically affect the value of the population mean 
and variance. As previously illustrated, the population 
variance is not robust, and similar problems plague the 
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population mean. There are three formal criteria for judg- 
ing the robustness of a parameter, but the details go be- 
yond the scope of this article. For a description written 
at an intermediate level of difficulty, see Staudte and 
Sheather (1990). For a less technical description, see Wil- 
cox (1997a). It turns out that the population mean, the 
population variance, and the population correlation do 
not satisfy any of these criteria. 

Under random sampling, it is known that as the 
sample size gets large, the sample mean approaches the 
population mean. Despite this result, it is possible for 
the empirical distribution to be arbitrarily close to the 
distribution generating the observations (in the Kolmo- 
gorov sense), but the difference between the sample mean 
and the population mean can be arbitrarily large! This 
problem does not arise when trimmed means or M esti- 
mators are used. 

In light of all the negative consequences of using 
means, should they be discarded? Presumably the answer 
is no, but using means to the exclusion of modem mea- 
sures of  location is not remotely satisfactory and it is a 
relatively uninformative way to proceed. 

Correlation 

When attention is turned to correlation and especially 
regression, the problems that plague methods for means 
remain, and in some ways, they become worse. There 
are formal methods for deriving robust analogues of  the 
population correlation and least squares regression, but 
no details are given here. In fact, there are dozens of  
robust correlations. Five robust correlations, beyond 
Spearman's  /9 and Kendall 's "r, are described in Wilcox 
(1997a) and have value depending on the goals of  the 
applied researcher. Here, the goal is to illustrate how a 
modem measure of  correlation versus the usual test of  
independence based on Pearson product -moment  corre- 
lation can yield substantially different conclusions. As 
will become evident, modem methods also provide in- 
sight into how outliers affect the overall assessment of 
how variables are related. A basic problem with correla- 
tion is that it is not resistant. That is, a single unusual 
value, or a small change in many values, can affect a 
Pearson product -moment  correlation to the point that 
one fails to detect associations that are revealed when 
more modem methods are used. 

Percentage-Bend Correlation 
The percentage-bend correlation (rob) is computed as de- 
scribed in Table 7.1 of Wilcox (1997a). (An S-PLUS 
function can be downloaded from the web site maintained 
by Academic Press, as described in section 1.7 of  Wilcox, 
1997a. A Minitab macro for computing the percentage- 
bend correlation comes with the textbook by Wilcox, 
1996.) One reason this measure of  association is pre- 
sented here is that its population value is equal to zero 
under independence. Not all robust measures of  associa- 
tion have this property. Another reason is that the re- 
suiting test of independence has been found to provide 

good control over the probability of  a Type I error for a 
broader range of distributions versus the standard test 
based on Pearson product -moment  correlation, espe- 
cially when one is dealing with multiple pairs of  random 
variables (Wilcox, 1997c). The test statistic for indepen- 
dence, using the percentage-bend correlation, is 

Vgn n - 2  
tob = r0bqT - r b' 

and the (two-sided) null hypothesis is rejected if Itpbl > 
t, where t is the 1 - a/2 quantile of  Student's t distribu- 
tion with n - 2 degrees of  freedom. That is, one should 
use the usual test with correlation replaced by the per- 
centage-bend correlation. The simple strategy of replac- 
ing standard estimators with some robust analogue in a 
conventional test statistic usually fails, but it happens to 
perform well for the problem at hand. 

When using the percentage-bend correlation, one 
must choose the value of a parameter that determines 
how many outliers can be handled. (This is the parameter 
/3 in Table 7.1 of  Wilcox, 1997a.) The situation is similar 
to choosing how much trimming to do when using 
trimmed means. I f  fl = 0 is used, rpb = r and a single 
outlier can be a problem. If  fl = .2, about 20% of the 
observations can be outliers, which appears to be a good 
choice for general use. In particular, even if distributions 
are normal, there is little advantage to using r over rob, 
but if fl = .5, this is not necessarily the case. However, 
there are situations where fl > .2 might be needed. Two 
versions are used here: one that is slightly resistant to 
outliers (fl = . 1) and one that is moderately resistant (fl 
= .2). The point that is illustrated here is that for the 
seemingly simple problem of testing for independence, 
modem robust methods can make a difference. 

Some Illustrations 

The first illustration is based on data collected by M. 
Earlywine and reproduced in Wilcox (1997a). Each par- 
ticipant consumed a specified amount of alcohol, and a 
measure of  hangover symptoms was recorded. This was 
done on three different occasions. The Pearson product -  
moment correlation (r) between Time 1 and Time 2 had 
a significance level of  .108, and for Time 2 and Time 3, 
the significance level was .075. When the slightly resis- 
tant percentage-bend correlation coefficient was used, the 
significance levels were .024 and .006, respectively. If  
one were to use the more resistant form of the percentage- 
bend correlation, then the significance levels would drop 
to .007 and .002, respectively, a rather dramatic decrease 
versus the Pearson product -moment  correlation. This 
suggests that the variables are dependent, a result that 
would have been missed if correlation was used at the 
.05 level. 

A more dramatic illustration is provided by the star 
data in Rousseeuw and Leroy (1987, p. 27), which con- 
sists of  the logarithm of the effective temperature at the 
surface of 47 stars versus its light intensity. First, look 
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Figure 5 
Star Data 
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at Figure 5, which shows a scatter plot of the data. Note 
that for the bulk of the data, X > 4, and the scatter plot 
suggests that there is a positive association between light 
intensity and temperature. However, r = - .21  with a 
significance level of  .15. This implies that as light inten- 
sity increases, temperature goes down, but surely this is 
an inadequate summary of the data because, in general, 
the reverse is true. The reason the correlation is negative 
is that the four isolated points in the left portion of Figure 
5 are outliers that dominate its value. As previously 
noted, even one outlier can cause the correlation to be 
negative when the remaining points have a positive asso- 
ciation. The slightly resistant percentage-bend correlation 
coefficient is equal to .065 with a significance level of 
.665. The outliers are having less of an influence, but for 
these data, more resistance is needed. The moderately 
resistant percentage-bend correlation is equal to .265 with 
a significance level of .072. ( If /3  is increased from .20 
to .26, the correlation is now .29 with a significance level 
of .048.) 

Once again, I am not suggesting that the outliers 
that affect the correlation are uninteresting. Quite to the 
contrary, there is the obvious issue of trying to determine 
why these points seem to differ from the bulk of the 
observations. If  one simply considers correlation, one is 
missing the fact that a few points dominate its value, and 
there is no hint that interesting outliers might exist. For 

the star data, it seems that there is a positive association 
if X > 4, but something interesting seems to occur for 
smaller values of X. If  one simply fits a least squares 
regression line to the data, one gets a negative slope, and 
again one misses the positive association when X > 4, 
and clearly this positive association is interesting too. 
Also, if  one tests the null hypothesis that p = 0 and gets 
a nonsignificant result, why does this occur? It might be 
because there is indeed no association, or perhaps there 
is an association, but an outlier prevented it from being 
detected. 

It might appear that the significance level decreases 
as the resistance of an estimator increases, but exceptions 
occur. Using the methods in Goldberg and Iglewicz 
(1992) as well as Rousseeuw and van Zomeren (1990), 
it can be seen that the data analyzed here have outliers 
that lower power. These outlier detection methods are 
based on robust multivariate measures of  location and 
scatter, the robust measure of  scatter being a robust ana- 
logue of the usual covariances between random variables. 
Goldberg and Iglewicz's method is limited to the bivari- 
ate case, but Rousseeuw and van Zomeren's  method can 
be used in the multivariate case. 

Regression 
There are many robust analogues of the ordinary least 
squares (OLS) regression estimator. Several of  them offer 
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substantial improvements in terms of power and resis- 
tance to outliers while sacrificing very little when the 
error term is normal and homoscedastic. Robust regres- 
sion estimators eliminate or reduce the effects of outliers, 
but again, it is stressed that when one is using a resistant 
estimator, it is not being suggested that unusual points 
have no interest. Robust methods add valuable insight 
into how variables are related, and modem regression 
methods play a role in identifying which points are in- 
deed unusual as compared with the bulk of the points 
being studied. That is, one of the tools that is useful when 
searching for unusual points is a regression method that 
is not itself sensitive to outliers. By finding a regression 
line that gives a good fit to the bulk of the points, one 
is better able to determine which points are unusual. 
Rousseeuw and van Zomeren (1990) described one such 
method, a summary of which is in Wilcox (1997a). 

Which regression estimator is best? Several estima- 
tors can handle a large number of outliers; many of these 
have poor efficiency in certain situations, meaning that 
they have relatively large standard errors, but several offer 
substantial advantages. In terms of achieving high power, 
the methods in Wilcox (1997a, chap. 8) currently stand 
out. The adjusted M estimator (see section 8.5.4 of Wil- 
cox, 1997a) seems particularly attractive in terms of effi- 
ciency, as compared with the OLS estimator, but situa- 
tions arise where some other robust method has higher 
power. That is, no single method is perfect. In terms of 
computing accurate confidence intervals, modem meth- 
ods give reasonably good results for a much broader 
range of situations than does the standard technique. 

The main message is that the OLS estimator is one 
of  the poorest choices researchers could make. In some 
cases, its standard error is more than 100 times larger 
than certain modem methods! Even when the error term 
is normal but heteroscedastic, the OLS estimator and the 
standard confidence interval can be unsatisfactory. For 
example, when the sample size equals 20, the actual prob- 
ability coverage can be less than .5 when a .95 confidence 
interval for the slope is being computed (Wilcox, 1997a, 
p. 209). Put another way, when one is testing at the .05 
level, the actual probability of a Type I error can exceed 
.5! In contrast, modem methods have probability cover- 
age close to the nominal level for these same situations. 
Currently, what works best when confidence intervals 
are being computed is a bootstrap percentile method in 
conjunction with any one of several robust estimators. 
The S-PLUS function regci in Wilcox (1997a) can be 
used with any estimator of interest, and tests that all p 
predictors are equal to zero can be made as well with 
the function regtest. 

A criticism of robust regression estimators is that 
the usual strategy of checking for curvature, by checking 
the residuals, can fail (e.g., Cook, Hawkins, & Weisberg, 
1992; McKean, Sheather, & Hettmansperger, 1993). One 
approach for dealing with this problem is to use some 
type of smoother, which is a method of examining the 
shape of a regression line without assuming any particu- 

lar parametric form, such as a straight line. An illustration 
is given below. As will become evident, even when the 
OLS estimator is used, scatter plots of the points might 
be deceptive. 

Some Illustrations 

Rather than describe the details of how robust regression 
methods are computed, I simply provide some illustra- 
tions of their importance. The first illustration is based 
on data collected by L. Doi and studied by Wilcox and 
Doi (1996). The general goal is to examine predictors of 
reading ability. One specific goal was to study the ability 
of a measure of speeded naming for digits (RAN1T1) to 
predict a measure of the ability to identify words 
(WWlSST2). Figure 6 shows a scatter plot of the points 
plus the OLS regression line, which is nearly horizontal. 
The estimated slope is -0 .02,  and the correlation is - . 0 4  
with a significance level of .76. Thus, it might seem 
that there is little or no association between these two 
variables. Now look at Figure 7, which shows a relplot 
of the same data plus a running interval smoother. A 
relplot is a bivariate analogue of the boxplot derived by 
Goldberg and Iglewicz (1992). The inner ellipse of a 
relplot contains half the points, and points outside the 
outer ellipse are labeled outliers. A running interval 
smoother was created with the S-PLUS function runmean 
in Wilcox (1997a). It estimates the regression line when 
the goal is to predict the 20% trimmed mean of 
WWISST2 with RAN1T1. Note that for the bulk of the 
points, there seems to be a negative association. Also, 
the outliers are raised high enough so as to mask this 
association when one is using OLS or correlation. If 
one uses the biweight midregression or the Winsorized 
regression methods in Wilcox (1997a), one rejects at the 
.05 level. If the range of RAN1T1 values is restricted 
so that outliers are eliminated, the slope is found to be 
significantly different from zero at the .05 level using the 
adjusted M estimator in Wilcox (1997a) in conjunction 
with a percentile bootstrap. Without restricting the range, 
the M estimator is not significant. (If points with outlying 
residuals are eliminated and standard methods are ap- 
plied, one gets the wrong standard error.) 

The Theil-Sen estimator has been found to compete 
well with the OLS estimator when there is only one re- 
gressor, its efficiency compares well with the M estimator 
used here, and accurate confidence intervals can be com- 
puted even when the error term is heteroscedastic and 
highly nonnormal and the sample size is as small as 20 
(Wilcox, 1997b). The estimator is easily applied when 
there is only one predictor (e.g., Conover, 1980). When 
there is more than one predictor, complications arise; 
perhaps M estimators are better for general use, but this 
needs further study. (When M estimators are used, the 
software in Wilcox, 1997a, can handle as many predictors 
as desired.) When a percentile bootstrap method is used, 
there seems to be little or no difference between the Theil- 
Sen estimator and the M estimator in terms of probability 
coverage. The Theil-Sen estimator is reasonably insensi- 
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Figure 6 
Scatterplot and Least Squares Fit of RAN1T1 Versus WWISST2 
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tive to outliers, and for the data at hand, it estimates the 
slope to be -0.282.  The .95 confidence interval (using 
the percentile bootstrap method) is ( -0 .63,  -0.01) ,  so 
the null hypothesis that fll = 0 would be rejected although 
there is some possibility that the slope is fairly close to 
zero. That is, without restricting the range of the RAN1T1 
values, once more a significant result is obtained. A Win- 
sorized correlation, with 20% Winsorization, has a sig- 
nificance level of .02, again using all of the data, and the 
percentage-bend correlation with fl = .2 has a signifi- 
cance level of .015. 

Again, it is stressed that unusual points are of inter- 
est, and it is not being' suggested that they have no value. 
For the problem at hand, there is interest in knowing how 
WWlSST2 is related to RAN1T1 when RAN1T1 has a 
value greater than 100, but with only six such points, it 
is difficult to know for sure. The only message here is 
that these six points seem to mask an association when 
RAN1T1 has a value less than 100. 

As another illustration, consider the Pygmalion data 
recently discussed by Snow (1995) and originally collected 
by R. Rosenthal. The study compared children in an experi- 
mental condition, for whom positive expectancies had been 
suggested to teachers, with children in a control condition, 
for whom no expectancies had been suggested. Both pretest 
and posttest reasoning IQ scores were obtained. For the 
experimental group, the usual correlation had a significance 

level of .052, whereas the two robust versions considered 
here have significance levels of .021 (~ = .1) and .007 (fl 
= .2). That is, the percentage-bend correlation provides 
more convincing evidence that the variables are dependent. 
The OLS estimator of the slope is 0.57 versus 0.647 using 
the Theil-Sen estimator. The standard .95 confidence inter- 
val for the slope is (-0.006, 1.138). 

Even when attention is restricted to the OLS estima- 
tor, modem methods have something to offer when one 
is computing confidence intervals or testing hypotheses. 
In particular, the modified percentile bootstrap method 
described in Table 13.5 of Wilcox (1996), which was 
designed specifically for the OLS estimator, performs 
well in simulations. Applying this method to the problem 
at hand, the .95 confidence interval for the slope is (0.059, 
1.777). Note that this interval is longer than the standard 
interval, the ratio of the lengths being (1.777 - .059)/ 
(1.138 + .006) = 1.5, a rather substantial difference. 
Despite this difference, the more accurate confidence in- 
terval rejects the hypothesis of a zero slope, but the stan- 
dard method does not. (The modified percentile method 
yields a confidence interval that is not necessarily sym- 
metric about the estimate of the slope, which is why the 
confidence interval can be longer yet reject when the 
standard method does not.) 

Again consider the Pygmalion data (Snow, 1995). 
The posttest scores of the two groups differed signifi- 
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F i g u r e  7 
ReTplot and Smooth of RAN 1 T1 Versus WWISST2 
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cantly, based on both the usual t test and robust methods. 
Generally, significant results with a standard method re- 
main significant when a robust technique is used. How- 
ever, if robust methods are used to compare the slopes 
and the intercepts, when comparing the regression lines 
for predicting posttest scores, given pretest scores, no 
differences are found. If  a robust analogue of analysis of 
covariance is used, which makes no parametric assump- 
tions about the form of the regression line, again highly 
nonsignificant results are obtained (Wilcox, 1997a). That 
is, if pretest scores are taken into account, there is no 
compelling reason to believe that expectancies influence 
test scores. Of  course, this one reanalysis does not resolve 
the controversy surrounding studies about Pygmalion in 
the classroom, but it does illustrate that new and im- 
proved methods might be used to study this issue. 

Concluding Remarks 
Experience suggests that it is easy to find situations where 
modem methods reject and standard methods for means 
do not. In contrast, it is difficult, but presumably possible, 
to find real data where methods based on means reject 
but trimmed means do not. Modem rank-based methods, 
developed after the year 1965, deserve serious consider- 
ation as well. Situations arise where rank-based methods 
reject but methods based on trimmed means do not, and 
it is common for the reverse to happen too. (Boxplots 

often provide an explanation for why this happens.) If  
the goal is to avoid low power, the worst method is the 
ANOVA F test. 

Regression is very difficult, and I do not mean to 
suggest that modern methods solve all practical problems. 
Unfortunately, I cannot point to a single method that 
always gives the best results, but many estimators can 
be eliminated, and recommendations can be made on how 
to proceed. The adjusted M estimator and the biweight 
midregression estimator appear to perform relatively well 
over a broad range of situations. If  there is one predictor, 
the Theil-Sen estimator deserves consideration as well. 
Which estimator is best depends on the situation at hand 
and cannot be determined prior to looking at the data. 
Although no single method is perfect, the least satisfac- 
tory approach can be identified: Apply OLS regression, 
or simply report correlations and assume all is well. De- 
spite this negative result, the more general message is 
very positive: Researchers have the technology to vastly 
improve on standard ANOVA and regression techniques. 
Thus, although at first the message in this article might 
seem discouraging, it really reflects a great opportunity 
for improving psychological research. 

REFERENCES 

Barnett, V., & Lewis, T. (1994)• Outliers in statistical data. New York: 
Wiley. 

March 1998 • American Psychologist 313 



Birkes, D., & Dodge, Y. (1993). Alternative methods of  regression. 
New York: Wiley. 

Conov~ W J. (1980). Practical nonparametric statistics. New York: Wiley. 
Cook, R. D., Hawkins, D. M., & Weisberg, S. (1992). Comparison of 

model misspecification diagnostics using residuals from least mean 
of squares and least median of squares fit. Journal of  the American 
Statistical Association, 87, 419-424. 

Cressie, N. A. C., & Whitford, H. J. (1986). How to use the two-sample 
t-test. Biometrical Journal, 28, 131-148. 

Goldberg, K.M., & Iglewicz, B. (1992). Bivariate extensions of the 
boxplot. Technometrics, 34, 307-320. 

Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J., & Stahel, W.A. 
(1986). Robust statistics: The approach based on influence functions. 
New York: Wiley. 

Harrell, E E., & Davis, C. E. (1982). A distribution-free quantile esti- 
mator. Biometrika, 69, 635-640. 

Hoaglin, D. C., Mosteller, E, & Tukey, J.W. (1983). Understanding 
robust and exploratory data analysis. New York: Wiley. 

Hoaglin, D. C., Mosteller, E, & Tukey, J.W. (1985). Exploring data 
tables, trends, and shapes. New York: Wiley. 

Hogg, R. V., & Craig, A. T. (1970). Introduction to mathematical statis- 
tics. New York: Macmillan. 

Huber, P. (1981). Robust statistics. New York: Wiley. 
McKean, J. W., Sheather, S. J., & Hettmansperger, T. P. (1993). The use 

and interpretation of residuals based on robust estimation. Journal 
of the American Statistical Association, 88, 1254-1263. 

Rousseeuw, P. J., & Leroy, A. M. (1987). Robust regression and outlier 
detection. New York: Wiley. 

Rousseeuw, P. J., & van Zomeren, B. C. (1990). Unmasking multivariate 
outliers and leverage points. Journal of  the American Statistical Asso- 
ciation, 85, 633-639. 

Snow, R. E. (1995). Pygmalion and intelligence? Current Directions in 
Psychological Science, 4, 169-171. 

Staudte, R. G., & Sheather, S. J. (1990). Robust estimation and testing. 
New York: Wiley. 

Westfall, P. H., & Young, S. S. (1993). Resampling based multiple test- 
ing. New York: Wiley. 

Wilcox, R. R. (1996). Statistics for the social sciences. San Diego, CA: 
Academic Press. 

Wilcox, R. R. (1997a). Introduction to robust estimation and hypothesis 
testing. San Diego, CA: Academic Press. 

Wilcox, R. R. (1997b). A note on the Theil-Sen regression estimator 
when the regressor is random and error term is heteroscedastic. 
Unpublished manuscript, University of Southern California. 

Wilcox, R.R. (1997c). Tests of independence and zero correlation 
among P random variables. Biometrical Journal, 39, 183-193. 

Wilcox, R. R., & Doi, L. M. (1996). Predictors of reading ability: An 
application of modern robust regression methods plus some new 
exploratory techniques. Unpublished manuscript. 

Yuen, K. K. (1974). The two-sample trimmed t for unequal population 
variances. Biometrika, 61, 165-170. 

314 M a r c h  1998 • A m e r i c a n  Psycho log i s t  


