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Abstract
Exploratory factor analysis (EFA) is a multivariate statistical method that 
has become a fundamental tool in the development and validation of 
psychological theories and measurements. However, researchers must 
make several thoughtful and evidence-based methodological decisions 
while conducting an EFA, and there are a number of options available at 
each decision point, some better than others. Reviews of the professional 
literature have consistently found that many applications of EFA are 
marked by an injudicious choice of methods and incomplete reports. This 
article provides a systematic, evidence-based guide to the conduct of EFA 
studies that can be followed by researchers with modest statistical training, 
supplemented with an example to illustrate its application.
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Exploratory factor analysis (EFA) is one of a family of multivariate statistical 
methods that attempts to identify the smallest number of hypothetical con-
structs (also known as factors, dimensions, latent variables, synthetic vari-
ables, or internal attributes) that can parsimoniously explain the covariation 
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observed among a set of measured variables (also called observed variables, 
manifest variables, effect indicators, reflective indicators, or surface attri-
butes). That is, to identify the common factors that explain the order and 
structure among measured variables. In the social and behavioral sciences, 
factors are assumed to be unobservable characteristics of people, which are 
manifested in differences in the scores attained by those people on the mea-
sured variables (Tucker & MacCallum, 1997). As described by Brown (2015),

A factor is an unobservable variable that influences more than one observed 
measure and that accounts for the correlations among these observed measures. 
In other words, the observed measures are interrelated because they share a 
common cause (i.e., they are influenced by the same underlying construct); if 
the latent construct was partitioned out, the intercorrelations among the 
observed measures will be zero. (p. 10)

Founded on philosophical and statistical principles (Mulaik, 1987), EFA 
was first applied by Spearman (1904) and rapidly became a fundamental tool 
in the evaluation of theories and validation of measurement instruments (Haig, 
2014; Henson & Roberts, 2006; Izquierdo, Olea, & Abad, 2014). As noted by 
Edwards and Bagozzi (2000), the relationships between constructs and their 
indicator variables are important because that knowledge allows unambiguous 
“mapping of theoretical constructs onto empirical phenomena” (p. 155) and, 
therefore, meaningful testing of theories (Loevinger, 1957; Meehl, 1990).

However, researchers must make several thoughtful and evidence-based 
methodological decisions while conducting an EFA (Henson & Roberts, 
2006). There are a number of options available for each decision, some better 
than others (Lloret, Ferreres, Hernandez, & Tomas, 2017). Reviews of the 
professional literature have consistently found that many applications of EFA 
are marked by an injudicious choice of techniques and incomplete reports 
(Ford, MacCallum, & Tait, 1986). Although desktop software has made EFA 
readily accessible to all researchers, the quality of EFA practice does not 
seem to have improved (Fabrigar, Wegener, MacCallum, & Strahan, 1999; 
Gaskin, & Happell, 2014; Henson & Roberts, 2006; Izquierdo et al., 2014; 
Lloret et al., 2017; Norris & Lecavalier, 2010). For instance, Fabrigar et al. 
(1999) judged that the quality of EFAs reported in psychological research is 
“routinely quite poor” (p. 295), and Norris and Lecavalier (2010) concluded 
that “many researchers continue to use suboptimal methodology” (p. 16).

There appears to be a constellation of reasons for the prevalence of poor 
quality EFA research (Fabrigar et al., 1999; Ford et al., 1986; Pett, Lackey, & 
Sullivan, 2003). First, researchers may receive relatively little formal training 
in EFA and are not familiar with the quantitatively complex literature on EFA 
methods. For example, Aiken, West, and Millsap (2008) found that only one-
half of doctoral psychology programs included even half a semester/quarter 
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class on factor analysis. Second, researchers tend to emulate existing publica-
tions that, as previously noted, are likely to be inadequate. Finally, research-
ers may rely on software that either defaults to unsound methods or fails to 
include optimal methods (Carroll, 1978; Fabrigar et al., 1999; Izquierdo 
et al., 2014; Lloret et al., 2017; Norris & Lecavalier, 2010).

Regardless of cause, suboptimal decisions in EFA can produce “distorted 
and potentially meaningless solutions” (Ford et al., 1986, p. 307) that can nega-
tively affect the development and refinement of theories and measurement 
instruments (Bandalos & Gerstner, 2016; Fabrigar & Wegener, 2012; Haig, 
2014; Henson & Roberts, 2006; Izquierdo et al., 2014; Lloret et al., 2017). To 
ameliorate this situation, a systematic, evidence-based guide to the conduct of 
EFA studies that can be followed by researchers with modest statistical training 
is needed. The goal of this article is to provide that guide, supplemented with 
an example to concretely illustrate its application. Depending on their statisti-
cal sophistication, readers may also want to consult relatively accessible (Child, 
2006; Fabrigar & Wegener, 2012; Pett et al., 2003) or more demanding 
(Gorsuch, 1983; Tucker & MacCallum, 1997) texts.

Software

EFA is included in many commercial statistical packages (e.g., SPSS, SAS, 
Stata) and tutorials on the use of EFA and supplemental statistical routines 
are accessible for those packages (e.g., Child, 2006; Fabrigar & Wegener, 
2012; Garson, 2013; Lloret et al., 2017; Mehmetoglu & Jakobsen, 2017; 
O’Connor, 2000; O’Rourke & Hatcher, 2013; Pett et al., 2003; Price, 2017). 
There are also free statistical programs that include EFA. The most compre-
hensive is the R package (R Core Team, 2017), which operates on Windows, 
Macintosh, and Linux operating systems. Several tutorials on using R for 
EFA have been published (Beaujean, 2014; Finch & French, 2015; Revelle, 
2016). Three other free EFA programs that operate on Windows systems are 
also available: (a) CEFA (Browne, Cudeck, Tateneni, & Mels, 2010), (b) 
FACTOR (Baglin, 2014; Ferrando & Lorenzo-Seva, 2017), and (c) Explorer 
(Fleming, 2017). Finally, a variety of free software packages that support 
EFA methods have been developed (see https://jasp-stats.org, http://folk.uio.
no/ohammer/past, https://www.jamovi.org, http://www.macstats.org, and 
http://edpsychassociates.com.

EFA Decisions

Variables to Include

Measured variables are selected for their utility as indicators of anticipated 
factors. That is, their content, convergent, and discriminant validity (Izquierdo 
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et al., 2014). Thus, measured variables should adequately represent the 
domains the factors are thought to tap and not include variables from unre-
lated domains (Tucker & MacCallum, 1997). For example, if the broad 
domain of reading is to be analyzed, multiple variables that measure each 
dimension of reading (e.g., phonemic awareness, phonics, vocabulary, com-
prehension) should be selected, but it would be inappropriate to include vari-
ables that measure addition and subtraction skills. In contrast, variables that 
tap blending, segmentation, rhyme, and deletion of phonemes would be 
appropriate if the narrow domain of phonemic awareness is to be investi-
gated. Inadequate sampling of the domain may fail to uncover important 
common factors or produce spurious factors. Of course, investigations of 
existing measurement instruments have a ready-made list of variables, and 
the researcher’s task is to evaluate the validity of those variables (structural, 
factorial, or construct validity).

At least three measured variables are needed for statistical identification 
of a factor although more indicators are preferable (Child, 2006; Fabrigar & 
Wegener, 2012; Izquierdo et al., 2014). Fabrigar et al. (1999) recommended 
four to six indicators per factor. In general, EFA tends to perform better when 
each factor is overdetermined (i.e., multiple measured variables are influ-
enced by that factor). Statistical software will operate with fewer than three 
variables per factor but akin to locating a point in three-dimensional space 
with one, two, or three lines, the location of such factors will be imprecise. 
Regardless of quantity, variables that are dependent on each other should not 
be included in an EFA: for example, several subscores and a total score cre-
ated by summing those same subscores.

In theory, there are situations where the observed variables are more prop-
erly treated as determinants rather than effects of constructs. These are called 
formative indicators (Edwards & Bagozzi, 2000). For example, education, 
income, and occupation may be formative indicators of socioeconomic status 
(SES). Elevated education and income and a high-status job cause higher 
SES; losing a job would result in lower SES, but this lowered SES would not 
change years of education. Formative indicator variables should be used with 
great caution in EFA (Bollen & Diamantopoulos, 2017).

Participants to Include

Careful consideration must be given to which and how many participants to 
include in an EFA. Which participants is primarily a matter of logic and com-
mon sense. Does the sample of participants make sense given the constructs 
that are being measured? Is the sample representative of the population of inter-
est? For example, selecting a group of male athletes for measurement of 



Watkins 223

postpartum depression would not be the most sensible strategy. Child (2006) 
also warned against using samples collected from different populations because 
factors that are specific to a population might be obscured when pooled.

The number of participants needed to adequately reproduce population 
values has been intensively debated for decades. Early recommendations 
were typically based on some ratio of the number of variables to the number 
of factors such as 5:1 or 10:1 or some arbitrary number of participants such 
as 100 or 200 (Hair, Black, Babin, & Anderson, 2010). However, statistical 
simulations have revealed that an adequate sample size is complexly deter-
mined by the strength of the measured variables’ relationships with the fac-
tors, factor overdetermination, and number of measured variables (Fabrigar 
et al., 1999; MacCallum, Widaman, Preacher, & Hong, 2001; Mundfrom & 
Shaw, 2005; Velicer & Fava, 1998). It appears that these three characteristics 
“interact in ways that permit compensation for weaknesses in one area by 
strengths in another area” (Velicer & Fava, 1998, p. 248). Handy tables of 
minimum sample sizes, based on these characteristics, were provided by 
Mundfrom and Shaw (2005). These tables clearly indicate that “factor analy-
sis is a large-sample procedure” (Norman & Streiner, 2014, p. 223).

Distributional Properties of the Data

The assumptions of EFA tend to be conceptual rather than statistical (Hair 
et al., 2010). For example, latent constructs are the source of covariation 
among measured variables, and those constructs exert a linear influence on 
the measured variables (Bandalos & Gerstner, 2016; Fabrigar & Wegener, 
2012; Tucker & MacCallum, 1997). Departures from normality and linearity 
are important only because they affect the Pearson product-moment correla-
tion coefficients (r) among measured variables used for computation of EFA 
results, which, in turn, “can result in misleading EFA findings” (Reise, Waller, 
& Comrey, 2000, p. 289). Therefore, it is important to investigate and report 
the distributional properties of the data that might affect the Pearson correla-
tions (Goodwin & Leech, 2006). See Flora, LaBrish, and Chalmers (2012) 
for detailed examples of data screening.

Variability. Most research samples result from some type of selective sam-
pling and are not identical to the population from which they are selected 
(Fabrigar & Wegener, 2012; Tucker & MacCallum, 1997). If a sample is 
more restrictive than the population then the variance of its variables will also 
be restricted, leading to attenuated r coefficients (Fabrigar et al., 1999). This 
effect is strikingly illustrated by comparing the correlations between verbal 
and quantitative test scores for applicants to a service academy: r was .50 for 
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the total applicate pool (N = 2,253) but only .12 for the 128 students who 
were admitted (Tucker & MacCallum, 1997). In such cases, it may be appro-
priate to correct for range restriction, being very careful to apply a suitable 
remedy (Hunter, Schmidt, & Le, 2006).

Linearity. The Pearson r coefficient measures the linear relationship between 
two variables. If the actual relationship is not linear, then the value of r will 
be reduced. Linearity can be subjectively judged by examination of scatter-
plots (Goodwin & Leech, 2006). If nonlinear, a more robust type of correla-
tion coefficient might be used instead of r (de Winter, Gosling, & Potter, 
2016; Gorsuch, 1983; Lloret et al., 2017; Revelle, 2016).

Normality. The Pearson correlation coefficient assumes normality (Goodwin 
& Leech, 2006), but violations of normality appear to be common with real 
data sets (Cain, Zhang, & Yuan, 2017; Micceri, 1989). Skew and kurtosis are 
especially influential on r and subsequent EFA results. Skew refers to the 
symmetry of the score distribution, whereas kurtosis is a measure of the 
height of the score distribution in relation to its width. In general, differences 
in distributions serve to decrease the size of the correlation coefficient, but 
two variables with extreme skew can produce artifactual factors (Bandalos & 
Gerstner, 2016). To reduce the possibility of skew affecting EFA results, all 
manifest variables should be scored in the same direction. That is, any nega-
tively valenced variables should be reverse scored so that high scores on all 
the variables mean the same thing (Norman & Streiner, 2014).

Multivariate skew and kurtosis can be statistically evaluated with Mardia’s 
(1970) estimates. Regardless of statistical significance, simulation studies 
have found that serious problems may exist when univariate skewness is ≥2.0 
and kurtosis is ≥7.0 (Curran, West, & Finch, 1996). When normality is statis-
tically improbable or when univariate skew and kurtosis are excessively ele-
vated (Curran et al., 1996), r is not the most appropriate input for EFA. More 
robust correlational methods (e.g., Spearman, phi, polychoric, tetrachoric) as 
well as judicious selection of EFA estimation methods would be advisable in 
that case (de Winter et al., 2016; Fabrigar et al., 1999; Fabrigar & Wegener, 
2012; Flora et al., 2012; Gorsuch, 1983; Lloret et al., 2017; Revelle, 2016).

Level of Measurement. Pearson correlations assume that normally distributed 
variables are measured on interval or ratio scales of measurement—that is, 
essentially continuous data with equal intervals. In contrast, ordinal variables 
(categorical with an inherent order such as Likert-type items) and dichoto-
mous (binary such as true-false items) variables will not meet these linearity 
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and normality assumptions and will, consequently, negatively affect correla-
tion coefficients and subsequent EFA results (Fabrigar & Wegener, 2012).

Given the ubiquity of ordinal data (Holgado-Tello, Chacon-Moscoso, 
Barbero-Garcia, & Vila-Abad, 2010), considerable research has been con-
ducted to identify correlation estimates more robust to nonnormality than 
Pearson coefficients and situations in which their use would be advantageous. 
Polychoric correlations have received extensive consideration because they 
assume that an unobservable normally distributed continuous variable under-
lies each observed categorical variable and estimates the Pearson correlation 
between those underlying hypothetical variables. Results from both simu-
lated and real data have converged to indicate that polychoric correlations are 
more likely to recover the true factor model than are Pearson correlations 
(Baglin, 2014; Barendse, Oort, & Timmerman, 2015; Flora et al., 2012; 
Holgado-Tello et al., 2010; Lee, Zhang, & Edwards, 2012) with the differ-
ence in methods becoming more extreme as the number of categories 
decreases. Given these results, methodologists have recommended that EFA 
be based on polychoric correlations if the ordinal variables are measured by 
fewer than five to seven categories or when distributions of the ordinal vari-
ables are asymmetrical (Bandalos & Gerstner, 2016; Fabrigar et al., 1999; 
Izquierdo et al., 2014; Lloret et al., 2017; Norris & Lecavalier, 2010).

Missing Data. Every study should report the quantity and nature of missing data 
as well as the rationale and methods used to deal with it. Obviously, the best 
strategy is to tightly control the experimental situation so that there is no miss-
ing data. Unfortunately, this approach is not always possible. Given this reality, 
considerable research has been conducted on missingness, and theory has been 
developed regarding its causes (see Little & Rubin, 2002, for a detailed 
account). Listwise and pairwise deletion of cases with missing data are the 
default methods in many statistical packages but are inefficient and typically 
not recommended (Baraldi & Enders, 2010). Alternatives include mean, regres-
sion, multiple, and maximum likelihood (ML) imputation methods (Baraldi & 
Enders, 2010). Studies of imputation methods with simulated and real data 
demonstrate that any method is probably effective when <5% of the data are 
missing, mean imputation is acceptable when <10% of the data are missing, 
and regression imputation is acceptable when <15% of the data are missing 
(Schumacker, 2015), but multiple imputation and ML methods are more accu-
rate when larger proportions of data are missing (Baraldi & Enders, 2010).

Outliers. Methods to detect outliers include box plots and scatterplots for 
individual variables as well as Mahalanobis distance for multiple variables 
(Aguinis, Gottfredson, & Joo, 2013). One source of outliers is out-of-range or 
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impossible values. These are likely the result of errors in data collection or 
input. Another source of outliers is failure to specify missing-value codes in 
software syntax so that missing-value indicators are read as real data. In 
either case, the erroneous data should be corrected. Alternatively, the outlier 
may be real but from a population that differs from the intended population. 
The later explanation can be addressed with deletion or transformation of the 
outlying value, but the desirability of these modifications is debatable, and 
many methodologists recommend against their application (Aguinis et al., 
2013; Zijlstra, van der Ark, & Sijtsma, 2011). Use of more robust estimators, 
such as Spearman or polychoric correlations, might be more appropriate (de 
Winter et al., 2016; Gorsuch, 1983; Revelle, 2016). If the researcher deletes 
any data, the decision-making process as well as results from an analysis that 
did not delete or transform the outliers should be reported.

Measurement Error. Measurement error decreases the reliability of the vari-
ables, which, in turn, decreases the correlation between variables. Low reli-
ability leaves little variance to be shared with other variables. Fabrigar et al. 
(1999) recommended that variables with reliabilities below .70 should be 
avoided in EFA. However, adhering to this reliability standard may not be 
possible when analyzing test items.

Appropriateness of the Data for EFA. Although great care may have been exer-
cised in selecting the variables and participants, it is nevertheless important 
to verify that the measured variables are sufficiently intercorrelated to justify 
factor analysis. A subjective method is to examine the correlation matrix. A 
sizable number of correlations should exceed ±.30 or EFA may be inappropri-
ate (Hair et al., 2010).

An objective test of the factorability of the correlation matrix is Bartlett’s 
(1954) test of sphericity, which statistically tests the hypothesis that the cor-
relation matrix contains ones on the diagonal and zeros on the off-diagonals. 
Hence, that it was generated by random data. This test should produce a sta-
tistically significant chi-square value to justify the application of EFA.

Large sample sizes make the Bartlett test sensitive to even trivial devia-
tions from randomness, so its results should be supplemented with a measure 
of sampling adequacy. The Kaiser-Meyer-Olkin (KMO; Kaiser, 1974) mea-
sure of sampling adequacy is the ratio of correlations and partial correlations 
that reflects the extent to which correlations are a function of the variance 
shared across all variables rather than the variance shared by particular pairs 
of variables. KMO values range from 0.00 to 1.00 and can be computed for 
the total correlation matrix as well as for each measured variable. Overall 
KMO values ≥.70 are desired (Hoelzle & Meyer, 2013; Lloret et al., 2017), 
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but values less than .50 are generally considered unacceptable (Child, 2006; 
Hair et al., 2010; Kaiser, 1974), indicating that the correlation matrix is not 
factorable. As colorfully described by Kaiser (1974), KMO values “in the 
.90s, marvelous; in the 80s, meritorious; in the .70s, middling; in the .60s, 
mediocre; in the .50s, miserable; below .50, unacceptable” (p. 35).

Model of Factor Analysis

The term EFA is often used rather loosely to refer to two models that differ in 
purpose and computation: specifically, principal components analysis (PCA) 
and common factor analysis (Fabrigar et al., 1999). PCA analyzes the entire 
correlation matrix (including the self-correlations of 1.00 found on the diago-
nal) and “is intended to reduce data while preserving as much information from 
the original data set as possible” (Norris & Lecavalier, 2010, p. 9). To do this, 
PCA computes linear combinations of the original measured variables that 
explain as much information as possible about those original variables. Called 
components, these new measured variables are parsimonious representations 
of the original measured variables but are not latent constructs (Cudeck, 2000). 
Instead, the measured variables influence the components. Accordingly, users 
of PCA should refer to these linear combinations as components, not factors.

Assuming that the measured variables are correlated because they are 
influenced by the same underlying latent construct, common factor analysis 
attempts to separate the total variance of the measured variables into the vari-
ance that is common to the measured variables (communality or h2, similar to 
the familiar R2 in regression) and variance that is unique (u2). Unique vari-
ance is composed of variance that is reliable but not shared with other mea-
sured variables (s2) plus unreliable measurement error (e). Thus, the total 
variance explained by common factors is equal to h2 + (s2 + e) or h2 + u2. 
Common factor analysis cannot separate specific from error variance and 
lumps them both into the u2 term (Tucker & MacCallum, 1997).

Common factor analysis partitions variance into h2 and u2 by analyzing a 
reduced correlation matrix with an estimate of the communality of each mea-
sured variable placed on the diagonal of the correlation matrix instead of the 
1.00 values as in PCA. Fortunately, the squared multiple correlation of each 
measured variable with all other measured variables has been found to be a 
good initial estimate of the common variance (Guttman, 1956; Tucker & 
MacCallum, 1997) and is the default option in most EFA software.

Both PCA and common factor analysis produce estimates of communality, 
but only common factor analysis estimates the uniqueness (u2) of each mea-
sured variable. By definition, h2 is dependent on the reliable variance of the 
measured variables and is an indicator of variable importance useful for 
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assessing the adequacy of measured variables and EFA results. For example, 
variables for which the common factors explain little variance (i.e., low com-
munality) may distort EFA results (Fabrigar et al., 1999).

PCA components may enhance parsimony in other statistical analyses and 
may contribute information for decisions regarding the number of factors to 
retain for subsequent common factor analysis, but most methodologists rec-
ommend that common factor analysis be employed when the purpose is to 
identify latent constructs responsible for the variation of measured variables 
(Carroll, 1978; Fabrigar et al., 1999; Ford et al., 1986; Gaskin, & Happell, 
2014; Gorsuch, 1983; Norman & Streiner, 2014; Norris & Lecavalier, 2010; 
Price, 2017; Tucker & MacCallum, 1997). For example, Fabrigar and 
Wegener (2012), recommended the following:

When the goal of research is to identify latent constructs for theory building or 
to create measurement instruments in which the researcher wishes to make the 
case that the resulting measurement instrument reflects a meaningful underlying 
construct, we argue that common factor analysis (EFA) procedures are usually 
preferable. (p. 32)

However, this distinction may make little difference when there are ≥40 mea-
sured variables (Loehlin & Beaujean, 2017). Unfortunately, PCA is the 
default model in several statistical programs regardless of the number of 
variables.

Estimation Method

After common factor analysis has been specified as the preferred model, the 
method used to estimate (extract) the common factor model must be selected. 
These mathematical procedures attempt to estimate the relationships between 
the measured variables and the factors (i.e., regression of measured variables 
on the common factors) that will replicate the observed correlation matrix as 
closely as possible (Finch & French, 2015).

A large number of estimation methods have been developed, but two 
methods that differ in assumptions are most common: ML and iterated prin-
cipal axis (PA; also known as principal factors, MINRES, or OLS estima-
tion). ML estimation derives from normal theory and is sensitive to 
multivariate normality and typically requires large sample sizes, whereas PA 
is a least-squares estimation method that makes no distributional assumptions 
(Cudeck, 2000). PA leverages the initial communality estimates into interme-
diate estimates that allow a more precise estimate of communalities that are 
iterated until a final solution is reached that best reproduces the measured 
correlation matrix (Norris & Lecavalier, 2010).
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The algebraic decomposition of the correlation matrix can produce as many 
factors as measured variables. An eigenvalue is computed for each of the 
resulting factors to indicate the amount of variance accounted for by that fac-
tor independent of all other factors. Eigenvalues can be converted into propor-
tions by dividing each eigenvalue by the total variance of the data (which is 
equal to the number of measured variables in the analysis). For example, if the 
first factor in a 10-variable analysis produces an eigenvalue of 4.0 then that 
factor would account for 40% of the total variance (4.0 ÷ 10 = .40).

Statistical simulations have found that PA outperforms ML when the rela-
tionships between measured variables and factors are relatively weak (≤.40), 
sample size is relatively small (≤300), multivariate normality is violated, or 
when the number of factors underlying the measured variables is misspeci-
fied (Briggs & MacCallum, 2003; Curran et al., 1996; MacCallum et al., 
2001). Simulation results led Briggs and MacCallum (2003) to recommend 
use of PA “in exploratory factor analysis in practice to increase the likelihood 
that all major common factors are recovered” (p. 54). In contrast, ML estima-
tion would be appropriate when factor-variable relationships are strong 
(>.40), sample size is large, multivariate normality is attained, and the num-
ber of factors is correctly specified (Fabrigar et al., 1999; Gaskin & Happell, 
2014; Norman & Streiner, 2014).

Nonconvergence of ML or iterated PA estimates can often be traced to 
problems with the data. After ruling out data errors, the number of iterations 
can be restricted to two or three to reduce the possibility of improper solu-
tions (Gorsuch, 1983; Loehlin & Beaujean, 2017). In any case, the researcher 
should also employ another estimation method to ensure that results repli-
cate. The researcher should also understand that “a number of different com-
mon factors can be produced to fit the same pattern of correlations in the 
manifest variables” (Haig, 2014, p. 76). Called indeterminacy, this is a chal-
lenge common to all multivariate methods that rely on empirical evidence 
(Mulaik, 1987).

The Number of Factors to Retain

Skillful application of EFA astutely balances parsimony and comprehensive-
ness. A compromise between these two extremes is to estimate a model that 
contains just enough factors to account for the important covariation among 
measured variables. This compromise necessitates a decision about the number 
of factors to retain in the model for further analysis. Helpfully, the process of 
model estimation assists in estimating the optimal model because, analogous to 
wringing water from a wet towel, the first factor extracts the most common 
variance with subsequent factors extracting successively smaller portions of 
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variance. This process will result in a sequentially descending set of eigenval-
ues that can be used to estimate the optimum number of factors to retain.

The eigenvalues produced by a PCA have traditionally been used to esti-
mate the number of factors to subsequently investigate in a common factor 
analysis (Carroll, 1978). A graphical method called the visual scree was devel-
oped by Cattell (1966), which entails plotting the magnitude of the component 
eigenvalues against the ordinal number of the components. Cattell (1966) spec-
ulated that trivial error factors would follow the “true” factors and be detected 
by an “elbow” or distinct break in the slope of the scree plot. Unfortunately, this 
is a subjective technique (Gorsuch, 1983), and researchers may disagree on the 
interpretation of scree plots (Child, 2006; Norman & Streiner, 2014).

Two empirical estimates of the estimated number of factors have also been 
developed: parallel analysis (Horn, 1965) and minimum average partials 
(MAP; Velicer, 1976). Parallel analysis statistically simulates a set of random 
data with the same number of variables and participants as the real data. That 
random data set is then submitted to PCA and the resulting eigenvalues saved. 
This process is repeated multiple times (100 at a minimum) and the resulting 
set of eigenvalues averaged and compared with the components extracted 
from the real data. The eigenvalues extracted from real data that exceed those 
extracted from random data indicate the number of factors to retain.

To compute MAP, a matrix of partial correlations is calculated after each 
principle component is extracted and the average of the squared partial off-
diagonal correlations is calculated for each of these matrices. This quantity 
should reach a minimum when the correct number of components is extracted 
because the maximum common variance has been partialled out of the matrix. 
At the point where the common variance has been removed and only unique 
variance remains, the MAP criterion will begin to rise.

Although selection of the correct number of factors to retain is one of the 
most important decisions in EFA (Child, 2006; Fabrigar & Wegener, 2012; 
Gorsuch, 1983; Izquierdo et al., 2014; Norman & Streiner, 2014), the default 
method used by many statistical software programs (e.g., the “eigenvalue 1” 
rule) is usually wrong and should not be used (Fabrigar & Wegener, 2012; 
Izquierdo et al., 2014; Norris & Lecavalier, 2010). Measurement specialists 
have conducted simulation studies and concluded that parallel analysis and 
MAP are the most accurate empirical estimates of the number of factors to 
retain and that scree is a useful subjective adjunct to the empirical estimates 
(Velicer, Eaton, & Fava, 2000; Velicer & Fava, 1998). Unfortunately, no 
method has been found to be correct in all situations (Fabrigar et al., 1999; 
Gorsuch, 1983; Pett et al., 2003), so it is necessary to employ multiple meth-
ods and carefully judge each plausible solution to identify the most appropri-
ate factor solution (Fabrigar & Wegener, 2012; Gorsuch, 1983; Hair et al., 
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2010; Henson & Roberts, 2006; Izquierdo et al., 2014; Lloret et al., 2017; 
Loehlin & Beaujean, 2017; Norris & Lecavalier, 2010; Pett et al., 2003). Of 
course, relevant theory and prior research must also be included as evidential 
criteria (Gorsuch, 1983). Consequently, a range of plausible factor solutions 
should be evaluated by selecting the smallest and largest number of factors 
suggested by these multiple criteria.

Rotation of Factors

PA estimation can be conceptualized as a transformation from correlation 
space to factor space via a least-squares procedure. PA estimates the correla-
tion (or loading) of each variable with each factor as illustrated in the top 
panel of Figure 1 where the X and Y axes represent the two dimensions in 
factor space. The three variables in the upper-right quadrant have moderately 
high loadings on Factor I (around .40-.60) and Factor II (approximately .75). 
The three variables in the lower-right quadrant have high loadings on Factor 
I (near .75) and low loadings on Factor II (roughly −.20). Thus, all six vari-
ables have high loadings on Factor I, making it difficult to interpret the 
underlying construct.

As this example illustrates, initial results are often difficult to understand 
because PA estimation concentrates on computational convenience without 
consideration of conceptual clarity (Fabrigar & Wegener, 2012). Factor rota-
tion is designed to achieve a simpler and theoretically more meaningful solu-
tion by rotating the axes within factor space to bring them closer to the location 
of the variables. As demonstrated in the bottom panel of Figure 1, the factor 
axes are held at right angles to one another and rotated 24° about their origin 
to bring them nearer the variables, which are fixed in factor space. Following 
that rotation, three variables have low loadings on Factor I and high loadings 
on Factor II, while the other three variables have high loadings on Factor I and 
low loadings on Factor II. This rotation is called orthogonal because the factor 
axes were maintained at a 90° angle. The two factors could be made even 
more distinct by allowing an oblique rotation whereby each axis is allowed to 
rotate about its origin independent of the other axis. An oblique rotation is 
demonstrated in the bottom panel of Figure 1 (dashed lines). Following this 
rotation, each factor has three high loadings and three low loadings, making it 
easier to discern the underlying constructs being measured.

In practice, factor rotation is accomplished mathematically rather than geo-
metrically. These analytic rotations adhere to the orthogonal versus oblique 
distinction as in the geometric perspective. Dozens of analytic rotation meth-
ods have been proposed (Gorsuch, 1983; Loehlin & Beaujean, 2017; Price, 
2017), but varimax (Kaiser, 1958) is the most popular orthogonal rotation 
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method, whereas promax (Hendrickson & White, 1964) and oblimin (Jenrich 
& Sampson, 1966) are the most popular oblique rotation methods. Both pro-
max and oblimin allow the analyst to control the degree of interfactor 

Figure 1. (Top panel) Conceptual illustration of two factors and six measured 
variables in two-factor space. (Bottom panel) Orthogonal (solid axis lines) and 
oblique (dashed axis lines) rotation about origin.
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correlation (via kappa and delta parameters, respectively, but the values auto-
matically applied by most statistical software programs are usually adequate.

To honor the reality that almost everything measured in the social sciences 
is correlated to some degree (Meehl, 1990), measurement specialists typi-
cally recommend that an oblique rotation be applied to allow factor intercor-
relations to emerge (Brown, 2015; Cudeck, 2000; Fabrigar et al., 1999; Flora 
et al., 2012; Gaskin, & Happell, 2014; Gorsuch, 1983; Norris & Lecavalier, 
2010; Price, 2017). If there is no real relationship between the factors, then 
both promax and oblimin rotations will produce orthogonal results. As sum-
marized by Fabrigar and Wegener (2012), “oblique rotations will often be a 
more realistic representation of the data, will provide a solution that allows 
for easier interpretation, and will give the researcher additional information 
not available in orthogonal rotations” (p. 78). Therefore, both promax and 
oblimin rotation are generally appropriate and either can be recommended 
(Carroll, 1978; Child, 2006; Gorsuch, 1983; Izquierdo et al., 2014; Loehlin & 
Beaujean, 2017; Norman & Streiner, 2014; Pett et al., 2003).

However, the superiority of oblique rotations comes at a cost. The initial 
estimation via PA produces an unrotated solution where each successive factor 
explains less variance than the prior factor, but rotation redistributes the vari-
ance among factors. Thus, the amount of variance accounted for by a factor 
will differ before and after rotation, but neither the total amount of explained 
variance nor the communalities of the measured variables will change.

Additionally, the interpretation of factor loadings differs between orthogo-
nal and oblique rotations. For orthogonal solutions, the factor loadings can be 
interpreted as correlations between common factors and measured variables. 
These correlations range from −1.00 to +1.00 and the proportion of variance 
in a measured variable that was contributed by a common factor can be com-
puted by squaring the factor loading. In contrast, oblique solutions produce 
two different types of factor loadings: structure and pattern coefficients. 
Structure coefficients can also be interpreted as correlations between com-
mon factors and the measured variables. In contrast, pattern coefficients are 
no longer simple factor-variable correlations; rather, they are similar to stan-
dardized partial regression coefficients. That is, they are correlations between 
common factors and measured variables after controlling for (partialing out) 
the influence of all other common factors. Accordingly, pattern coefficients 
might exceed |1.00| and cannot be squared to obtain the proportion of vari-
ance uniquely contributed by a common factor.

Unfortunately, rotation allows “an infinite number of alternative orienta-
tions of the common factors (or principal components) in multidimensional 
space” (Fabrigar & Wegener, 2012, p. 67). For example, the 24° orthogonal 
rotation illustrated in Figure 1 could have been 20° or 30° or 70.89°, etc. 
Thus, there is no unique rotational solution for any EFA model.
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Interpretation of Results

Interpretation of factors requires consideration of the measured variables and 
their relationships with the factors (Gorsuch, 1983). Both pattern and struc-
ture coefficients register variable-factor relatedness and will be similar if the 
factor intercorrelations are low, but dissimilar if the factor intercorrelations 
are high. Although not universally agreed (Gorsuch, 1983), pattern coeffi-
cients should be the first focus of interpretation in most analyses (Cudeck, 
2000; Fabrigar & Wegener, 2012; Hair et al., 2010; Price, 2017). Structure 
coefficients should also be reviewed to ensure that anomalous results were 
not produced. For example, a large pattern coefficient but low structure coef-
ficient might identify a variable with no direct overlap with the construct, 
whereas a small pattern coefficient but large structure coefficient might iden-
tify a variable that is also strongly influenced by other factors (Graham, 
Guthrie, & Thompson, 2003). Structure coefficients may also be useful for 
subsequent naming of factors. In any case, researchers should always identify 
the coefficient being interpreted (pattern or structure) rather than relying on 
the generic “factor loading” term that could apply to either coefficient.

Respecting the parsimony principle, weak pattern coefficients are not con-
sequential. To be considered strong enough for interpretation (i.e., salient), 
pattern coefficients should be statistically significant (i.e., not likely due to 
chance) and large enough to be practically useful (Gorsuch, 1983). Norman 
and Streiner (2014) provided an approximate formula for the statistical sig-

nificance of pattern coefficients at the 1% level: 
5 152

2

.

N −
. If p < .05 is  

sufficient, then the numerator of 5.152 can be replaced by 3.92. The practical 
usefulness of pattern coefficients has often been judged to lie in the |.30| to 
|.40| range (Bandalos & Gerstner, 2016; Hair et al., 2010). That is, those vari-
ables with 9% to 16% of their variance explained by a factor after controlling 
for the influence of other factors.

First articulated by Thurstone in 1947, the concept of simple structure is the 
most common strategy to guide interpretation of EFA results (Gorsuch, 1983). 
Conceptually, simple structure is an attempt to find a solution where each fac-
tor is loaded by several salient variables and each variable has a salient loading 
on one factor and trivial loadings on the remaining factors (Brown, 2015). 
Simple structure recognizes “the purpose of science [which] is to uncover the 
relatively simple deep structure principles or causes that underlie the apparent 
complexity observed at the surface structure level” (Le, Schmidt, Harter, & 
Lauver, 2010, p. 112). However, simple structure must be combined with 
other criteria to identify acceptable EFA solutions. Specifically, (a) each factor 
should be saliently loaded by at least three variables (i.e., overdetermined), (b) 
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each variable should load saliently on only one factor (no complex or cross-
loadings), (c) each factor should demonstrate internal consistency reliability 
≥.70, and (d) all factors should be theoretically meaningful (Bandalos & 
Gerstner, 2016; Fabrigar & Wegener, 2012; Ford et al., 1986; Gorsuch, 1983; 
Hair et al., 2010; Norman & Streiner, 2014; Velicer & Fava, 1998).

The interpretation process begins by conducting an EFA with the largest 
number of plausible factors identified by parallel analysis, MAP, scree, or 
theoretical convergence and evaluating its adequacy based on these four cri-
teria of acceptability. Next, one fewer factor is extracted and its solution 
evaluated. This process continues until the complete range of plausible factor 
solutions has been evaluated (Fabrigar et al., 1999; Pett et al., 2003). With 
this approach, it is likely that some models will be overfactored (too many 
factors included) thereby introducing unwanted error variance and others will 
be underfactored (too few factors included), thereby leaving out useful com-
mon variance. It is generally agreed that overfactoring alters the solution less 
than underfactoring because the major factors will continue to appear in over-
factoring, whereas they may be falsely combined into a single factor, altering 
true factor loadings, in underfactoring (Wood, Tataryn, & Gorsuch, 1996). A 
symptom of overfactoring is a factor saliently loaded by fewer than three 
variables (Gorsuch, 1983), whereas complex loadings may be a symptom of 
underfactoring (Bandalos & Gerstner, 2016). As described by Fabrigar and 
Wegener (2012), “often when too few common factors have been specified in 
the model, two or more factors will be collapsed onto the same factor, making 
it difficult to identify a single unifying theme among the measured variables” 
(p. 87). However, complex loadings may not be problematic if there is a clear 
theoretical reason to believe that the measured variable is influenced by more 
than one latent construct. A measured variable with high reliability and low 
communality might be an indicator of a specific factor that could be enhanced 
by including additional indicators (Child, 2006).

Researchers more familiar with the statistics of EFA may also want to 
review the residual matrix to identify specific misfitting parameters (Gorsuch, 
1983; Tucker & MacCallum, 1997). The residual matrix represents the differ-
ence between the original correlation matrix and the correlation matrix that was 
implied by the factor solution. Given that the goal of EFA is to reproduce the 
correlation matrix, sizeable residuals (≥|.10| may indicate that there are more 
factors remaining to be extracted (Cudeck, 2000; Pett et al., 2003).

Researchers may also consider a higher-order factor solution if the inter-
factor correlations are substantial (Child, 2006; Gorsuch, 1983). If the higher-
order factors explain a considerable portion of the variance (≥40%; Gorsuch, 
1983), then the higher-order model may be more interesting than the oblique 
solution. Alternatively, it might be advantageous to omit one factor from the 
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model if the interfactor correlations are too high (Le et al., 2010). As described 
by Brown (2015), “factor intercorrelations above .80 or .85 may imply poor 
discriminant validity, and suggest that a more parsimonious solution could be 
obtained” (p. 28). To this end, interfactor correlations that rival the reliability 
of the factors themselves should probably be questioned (Meehl, 1997).

Any interpretation of EFA results must keep in mind that factors are hypo-
thetical constructs that cannot be measured directly; rather, they are inferred 
from their effects on manifest variables. Accordingly, factors are typically 
named by considering what their most salient manifest variables have in 
common. Both pattern and structure coefficients should be used for this pur-
pose, but structure coefficients may be more useful because they reflect fac-
tor-variable correlations without the confounding effect of other factors. To 
reduce the possibility of confusion, factors should not be given the same 
names as manifest variables. Kline (2016) described three cautions regarding 
factor names: (a) they are solely for ease of verbal communication and may 
not mean that “the hypothetical construct is understood or even correctly 
labeled” (p. 300), (b) they should not be thought of as corresponding to real 
things (i.e., reification), and (c) it should not be assumed that if they have the 
same name that two factors are the same thing (jingle fallacy) or that if they 
have different names that they are different things (jangle fallacy). Rather, the 
value of factors should be judged by the meaningfulness of their relationships 
with external criteria and their replicability across samples, methods, and 
studies (Gorsuch, 1983; Tucker & MacCallum, 1997).

Report the Results

As with all research reports, the EFA report should describe how the study 
was conducted and should present the results with sufficient detail, clarity, 
and coherence to support the validity of the results and should justify the 
conclusions of the study (Appelbaum, Cooper, Kline, Mayo-Wilson, Nezu, & 
Rao, 2018). Additionally, the EFA report should address each of the preced-
ing decisions and include the information detailed in Table 1  (Ford et al., 
1986; Pett et al., 2003).

Example of an EFA Report

Method

Participants. Participants were 197 secondary students (50.5% male) of African 
ancestry enrolled in 27 randomly selected classrooms (Forms 1-5) within 6 
randomly selected secondary schools in the Republic of Trinidad and Tobago. 
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Participants ranged in age from 12 to 17 years (M = 14.1, SD = 1.3). Based on 
the average factor loadings found in prior research (Gilman, Laughlin, & Hueb-
ner, 1999), it was anticipated that 197 participants would allow excellent recov-
ery of the population factor solution (Mundfrom & Shaw, 2005).

Instruments. The Self-Description Questionnaire–II (SDQ) was published by 
Marsh in 1990 with an Australian normative sample. The full SDQ contains 
102 items that address 11 areas of self-concept. However, only the math and 
verbal (reading and English) self-concept areas were included in this exam-
ple for simplicity of presentation. Ten Likert-type items addressed each self-
concept area with each item scored on a scale of 1 = False, 2 = Mostly False, 
3 = More False Than True, 4 = More True Than False, 5 = Mostly True, to 6 
= True. All negatively valenced items were reverse scored.

Reliability estimates for SDQ subscale scores have been reported in the 
.70 to .90 range (Marsh, 1990). In a comprehensive review of self-concept 
measures, Byrne (1996) strongly endorsed the construct validity of SDQ 
scores, and SDQ scores have subsequently been validated with a wide variety 

Table 1. Information to Include in an EFA Report.

•• Justification of the measured variables included in the EFA
•• Justification of type and number of participants included in the EFA
•• Data characteristics (including descriptive statistics, normality, missing data, etc.)
•• Appropriateness of data for EFA (Bartlett and KMO statistics)
•• Computer program and version
•• Correlation matrix analyzed (Pearson, polychoric, etc.)
•• Factor model (principal components analysis vs. common factor analysis)
•• Estimation method (iterated principal axis, maximum likelihood, etc.)
•• Method of estimating communalities
•• How number of factors to retain was determined
•• Factor rotation method
•• Strategy for interpreting factors (including how salience was defined)
•• Percentage of variance accounted for by factors (specify before or after 

rotation)
•• Complete pattern coefficient matrix (do not omit low coefficients)
•• Interfactor correlations (for oblique rotations)
•• Reliability estimates for the identified factors
•• Complete structure coefficient matrix (when substantially different from pattern 

matrix)
•• Eigenvalues for all factors if space permits
•• Correlation matrix if space permits

Note: EFA = exploratory factor analysis; KMO = Kaiser-Meyer-Olkin.
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of participants (e.g., Gilman et al., 1999; Mucherah & Finch, 2010; Wastlund, 
Norlander, & Archer, 2001).

Procedure. A complete description of the research procedures employed in 
this study can be found in Worrell, Watkins, and Hall (2008).

Analyses. Analyses were conducted with the R statistical package (Macintosh 
Version 3.4.3; R Core Team, 2017) and its psych package (Version 1.7.8). 
Bartlett’s test of sphericity (Bartlett, 1950) was used to ensure that the cor-
relation matrix was not random and the KMO statistic (Kaiser, 1974) was 
required to be above a minimum of .50.

After confirming that the correlation matrix was factorable, it was submit-
ted for EFA. Common factor analysis was selected over PCA because the 
intent was to identify a latent factor structure (Fabrigar et al., 1999). An iter-
ated PA extraction method with initial communalities estimated by squared 
multiple correlations was employed because of its relative tolerance of non-
normality and demonstrated ability to recover weak factors (Briggs & 
MacCallum, 2003; Guttman, 1956). Following the advice of Velicer et al. 
(2000), parallel analysis (Horn, 1965), MAP (Velicer, 1976), and the visual 
scree test (Cattell, 1966) were used to determine the appropriate number of 
factors to retain. Parsimony and theoretical convergence were also consid-
ered. Due to the nature of the constructs, it was assumed that factors would 
be correlated. Therefore, an oblimin rotation (Jennrich & Sampson, 1966) 
was employed (Carroll, 1978; Child, 2006).

Criteria for determining factor adequacy were established a priori. Given 
the number of participants in this study, pattern coefficients ≥.37 were consid-
ered salient (i.e., both practically and statistically significant as per Norman & 
Streiner, 2014). Complex loadings that were salient on more than one factor 
were rejected to honor simple structure (Thurstone, 1947). Factors with a min-
imum of three salient pattern coefficients, internal consistency reliability ≥.70, 
and that were theoretically meaningful were considered adequate.

Results

Of the 197 respondents, 20 were missing 1 or 2 item responses for a total of 
25 missing data points. Given that this represented less than 1% of the data, 
mean imputation was employed (Schumacker, 2015). Descriptive statistics 
for the imputed data set are provided in Table 2. Although univariate skew-
ness and kurtosis were not extreme (Curran et al., 1996), Mardia’s multivari-
ate skew and kurtosis were both statistically significant (p < .001). Given this 
nonnormality as well as the ordinal nature of SDQ items, a polychoric 
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correlation matrix was deemed to be appropriate input for EFA (Bandalos & 
Gerstner, 2016; Fabrigar et al., 1999; Lloret et al., 2017).

The results of Bartlett’s test of sphericity (Bartlett, 1954) indicated that the 
correlation matrix was not random, χ2(190) = 2,648, p < .001, and the KMO 
statistic (Kaiser, 1974) was .80, well above the minimum standard for con-
ducting factor analysis. Therefore, it was determined that the correlation 
matrix was appropriate for factor analysis.

Parallel analysis, MAP, and scree all suggested that three factors should be 
retained but theory (Marsh, 1990) indicated that only two factors were required. 
Therefore, the three- and two-factor solutions were sequentially examined. The 
three-factor solution was inadequate: Although four items saliently loaded on the 
third factor, all four items complexly loaded on the first two factors, and the third 
factor’s internal consistency (alpha) reliability was only .57 (95% CI = .48-.67).

Table 2. Descriptive Statistics and Pattern Coefficients for 197 Participants on the 
Math and Verbal Items of the Self-Description Questionnaire-II.

Item

Descriptive Statistics Factors

h2Mean SD Skew Kurtosis Math Verbal

Math 1 3.89 1.89 −0.30 −1.38 .83 −.10 .71
Verbal 1 4.93 1.45 −1.26 0.49 .04 .68 .47
Math 2 3.68 1.92 −0.19 −1.50 .73 .03 .53
Verbal 2 4.24 1.82 −0.63 −1.02 −.01 .59 .35
Math 3 4.11 1.88 −0.54 −1.18 .63 .09 .40
Verbal 3 4.85 1.67 −1.23 0.10 .06 .62 .38
Math 4 4.71 1.70 −1.10 −0.22 .64 .12 .41
Verbal 4 4.61 1.49 −0.97 −0.04 .05 .72 .52
Math 5 3.63 1.91 −0.12 −1.45 .76 .00 .58
Verbal 5 4.98 1.55 −1.34 0.49 .06 .59 .35
Math 6 3.96 1.90 −0.38 −1.36 .83 −.04 .69
Verbal 6 4.44 1.83 −0.81 −0.82 −.19 .73 .59
Math 7 3.88 1.89 −0.31 −1.41 .82 −.02 .67
Verbal 7 5.03 1.53 −1.54 1.15 .02 .57 .32
Math 8 4.50 1.85 −0.84 −0.85 .70 .12 .49
Verbal 8 4.69 1.57 −1.06 0.06 .00 .74 .54
Math 9 3.71 1.88 −0.26 −1.42 .71 −.04 .51
Verbal 9 4.09 1.89 −0.42 −1.38 .07 .41 .17
Math 10 4.38 1.89 −0.71 −1.04 .83 .00 .68
Verbal 10 4.77 1.55 −1.27 0.60 .01 .83 .69

Note: h2 = communality. Salient pattern coefficients ≥.37 in boldface. Structure coefficients 
were almost identical to pattern coefficients due to factor correlation of −.08.
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The two-factor solution was next examined for adequacy. Each factor was 
saliently loaded by 10 items (see Table 2) with math and verbal items coher-
ing as specified by Marsh (1990). Following rotation, the math factor 
accounted for 28% of the total variance and 56% of the common variance 
while the verbal factor accounted for 22% of the total variance and 44% of 
the common variance. Coefficient alpha was .90 (95% CI = .88-.92) for the 
math factor and .82 (95% CI = .79-.86) for the verbal factor. The math and 
verbal factors correlated at −.08, producing almost identical pattern and 
structure coefficients. Given these results, the two-factor solution was 
accepted as the most adequate structural representation of the SDQ with these 
participants and was subsequently found to be robust across alternative 
extraction and rotation methods as well as when missing data were deleted.

Discussion

Using evidence-based EFA methods, this study found that the 20 math, read-
ing, and English items of the SDQ coalesced into relatively orthogonal math 
and verbal self-concept factors in a sample of students of African ancestry 
enrolled in secondary schools in the Republic of Trinidad and Tobago. These 
results are broadly consistent with those found for adolescents in Africa, 
Asia, Australia, Europe, and North American (Gilman et al., 1999; Marsh, 
1990; Mucherah & Finch, 2010; Nishikawa, Norlander, Fransson, & 
Sundbom, 2007; Wastlund et al., 2001; Yeung & Lee, 1999). However, scru-
tiny of Table 2 reveals that several verbal items contributed relatively little to 
the analysis (especially Verbal Item 9 with a communality of .17) making 
them prime suspects for future revision of the SDQ (Child, 2006). This result 
is compatible with recommendations based on item response theory analyses 
to shorten SDQ scales because of redundancy among the items (Flannery, 
Reise, & Widaman, 1995). Regardless, the value of SDQ factors should be 
judged by the meaningfulness of their relationships with external criteria and 
their replicability across samples, methods, and studies (Gorsuch, 1983; 
Tucker & MacCallum, 1997).
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