
10.1177/1094428104263672ORGANIZATIONAL RESEARCH METHODSBallinger / GENERALIZED ESTIMATING EQUATIONS
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The generalized estimating equation (GEE) approach of Zeger and Liang facili-
tates analysis of data collected in longitudinal, nested, or repeated measures de-
signs. GEEs use the generalized linear model to estimate more efficient and unbi-
ased regression parameters relative to ordinary least squares regression in part
because they permit specification of a working correlation matrix that accounts
for the form of within-subject correlation of responses on dependent variables of
many different distributions, including normal, binomial, and Poisson. The author
briefly explains the theory behind GEEs and their beneficial statistical properties
and limitations and compares GEEs to suboptimal approaches for analyzing lon-
gitudinal data through use of two examples. The first demonstration applies GEEs
to the analysis of data from a longitudinal lab study with a counted response vari-
able; the second demonstration applies GEEs to analysis of data with a normally
distributed response variable from subjects nested within branch offices of an
organization.

Keywords: longitudinal regression; nested data analysis; generalized linear
models; logistic regression; Poisson regression

Organizational researchers who investigate topics such as absenteeism, innovation,
turnover intentions, and decision making have often been forced to rely on suboptimal
methods of analyzing their data because responses are generally not normally distrib-
uted. Researchers may either transform the response variable prior to conducting data
analysis or use a method of aggregating their response variable so as to make the distri-
bution of responses approximately normal. But these approaches sacrifice both preci-
sion in analysis and clarity in interpreting results (Gardner, Mulvey, & Shaw, 1995;
Harrison, 2002).

A separate challenge comes in analyzing data that are correlated within subject,
such as that provided in longitudinal studies and other studies in which data are clus-
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tered within subgroups. Failure to incorporate correlation of responses can lead to
incorrect estimation of regression model parameters, particularly when such correla-
tions are large. The regression estimates (βs) are less efficient, that is, they are more
widely scattered around the true population value than they would be if the within-
subject correlation were incorporated in the analysis (Diggle, Heagerty, Liang, &
Zeger, 2002; Fitzmaurice, 1995). To increase their confidence in regression results,
researchers should use analytical methods that produce the most efficient parameter
estimates that are also unbiased (cf. McCullagh & Nelder, 1989; Pindyck &
Rubinfeld, 1998), that is, with an expected mean value that is the true population
parameter that is being estimated. Organizational researchers faced with evaluation of
dependent variables arising from longitudinal data collections instead can use a
method that provides efficient and unbiased parameter estimates for analyzing data
without transforming it and produces easily interpretable and communicable results
that can be used to test hypotheses.

Harrison and Hulin (1989) identified generalized estimating equations (GEEs) as
an analytic tool with promise for organizational research because the method
accounted for correlation of responses within subject for response variables and was
flexible enough for use in analyzing response variables that were not normally distrib-
uted. The GEE approach was developed by Liang and Zeger (1986) and Zeger and
Liang (1986) to produce more efficient and unbiased regression estimates for use in
analyzing longitudinal or repeated measures research designs with nonnormal
response variables. The method has received wide use in medical and life sciences
such as epidemiology, gerontology, and biology. Its application to date in organiza-
tional and psychological research has been more limited, and the purposes of this arti-
cle are to describe GEEs and their statistical properties, briefly clarify the advantages
and disadvantages of using GEEs over other methods for analyzing longitudinal data,
and provide further information on the steps that users can take to apply GEEs to ana-
lyzing data and testing hypotheses applicable to organizational research. I also discuss
some of the significant limitations of the method both as they apply to the specific con-
text of the examples provided and as some of the general weaknesses of the approach.

The GEE algorithm has been incorporated into many major statistical software
packages used by organizational researchers, including SAS, STATA, HLM,
LIMDEP, and S-Plus, and the sample data sets were analyzed using both SAS and
STATA. There are many similar steps that users must take to prepare their data for
analysis using any software package, and in describing how to use GEEs, I will walk
the reader through the various decisions that must be made to correctly specify the
model and produce the appropriate results. Readers are referred to Horton and Lipsitz
(1999) for a general review of software available to fit GEE regression. Hardin and
Hilbe (2003) provide guidance on how to fit GEEs in STATA and SAS; Stokes, Davis,
and Koch (2000) address fitting GEE regression in SAS; and Bryk, Raudenbush, and
Congdon (2003) provide guidance on fitting GEEs in HLM.

Analysis of Limited-Range Dependent Variables

Organizational researchers frequently investigate choice behaviors such as absen-
teeism (do I show up to work today or not?) and turnover (do I leave my job or stay?).
Other counted or choice behaviors investigated by researchers in organizational set-
tings include the number of patents received by different firms (e.g., Ahuja & Katila,
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2001; Ahuja & Lampert, 2001), market entry and exit decisions (Haveman &
Nonnemaker, 2000), and the number of position upgrades granted to a division in a
given year (Welbourne & Trevor, 2000). These outcomes fall into what Harrison
(2002) referred to as “limited range dependent variables”; and ordinary least squares
(OLS) regression analysis of them is complicated in part because the range of
responses is constrained. In the case of choice behavior, we model the probability of a
positive choice; the dependent variable can take on a value no larger than 1. In counted
responses, the dependent variable must be greater than or equal to zero. Falsely assum-
ing normality in such cases can lead to incorrect results (Gardner et al., 1995).

Using a linear regression approach to analyze choice behaviors is complicated as
well by the fact that the regression estimates may violate other assumptions necessary
for OLS. We may be faced with nonconstant variance for values of the dependent vari-
able, particularly when modeling probabilities (McCullagh & Nelder, 1989; Pindyck
& Rubinfeld, 1998) and the error terms are generally not normally distributed (Harri-
son, 2002). In many cases, using a power transformation on the dependent variable
prior to running an OLS regression is also a suboptimal approach because it compli-
cates interpretations of the parameter estimates. OLS may also use incorrect assump-
tions regarding the constancy of variance of the underlying distribution of the data that
could lead to results that do not make sense given the distribution of the data
(McCullagh & Nelder, 1989). For example, when modeling counted data, the depen-
dent variable must always be positive, yet at some levels of the independent variables
multiplied by the OLS regression estimates, negative values for the dependent variable
could be produced (Gardner et al., 1995). Researchers have generally agreed that logit
or probit models are appropriate for constructing regression models of binary choice
behaviors (McCullagh & Nelder, 1989; Pindyck & Rubinfeld, 1998; Harrison, 2002),
and Poisson or negative binomial regression using generalized linear models has been
accepted as the best means of estimating probabilities in cases in which the dependent
variable consists of counted data (Gardner et al., 1995).

Correlation of Responses

When faced with data that consist of repeated measures that may be correlated
within a subject over repeated measures or within a cluster of observations in a particu-
lar group, researchers must account for the correlation within responses when estimat-
ing regression parameters. Otherwise, they can make incorrect inferences about the
regression coefficients (because of incorrect estimation of the variances) and ineffi-
cient or biased estimates of the regression coefficients (Diggle et al., 2002) that could
lead to incorrect conclusions regarding their research questions. Fitzmaurice (1995)
demonstrated that when faced with an independent variable that varies within a cluster
(referred to as a time-dependent covariate in longitudinal studies), “the efficiency
of . . . estimators declines with increasing correlation, and the decline is most notable
when the correlation is greater than .4” (p. 313). Efficiency losses were large as corre-
lation increased, as the asymptotic relative efficiency of parameter estimates assuming
independence fell to approximately 40% for within-cluster correlations of .5 or more.
The errors are particularly large for cases in which the correlation within subject is
highly positive or highly negative.

Repeated measures ANOVA approaches to the problem are inadequate because
they do not use a model of the covariance among repeated observations to increase the
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efficiency of the parameter estimates, they generally require balanced and complete
data sets, they are restricted to the analysis of normally distributed response variables,
and they do not allow for the analysis of covariates that change over time (Diggle et al.,
2002). Given that users of statistical estimation approaches should be highly con-
cerned with efficiency in the estimators, researchers conducting longitudinal research
have relied on several tools to approach these problems, including time series regres-
sion (Pindyck & Rubinfeld, 1998) and linear regression with adjustments for
nonindependence. OLS regression models have been adapted for analysis of corre-
lated responses when the dependent variable is normally distributed. But in conduct-
ing regression analysis of panel-correlated binary or counted dependent variables, one
needs to use the quasi-likelihood method based on generalized linear models
(McCullagh & Nelder, 1989; Nelder & Wedderburn, 1972; Wedderburn, 1974) known
as GEEs.

GEEs

GEEs were developed by Liang and Zeger (1986) and Zeger and Liang (1986) as a
means of testing hypotheses regarding the influence of factors on binary and other
exponentially (e.g., Poisson, Gamma, negative binomial) distributed response vari-
ables collected within subjects across time. They are an extension of generalized linear
models, which facilitate regression analyses on dependent variables that are not nor-
mally distributed (McCullagh & Nelder, 1989; Nelder & Wedderburn, 1972). The
approach that I focus on mostly in this article is the one in which GEE develops a popu-
lation average or marginal model. Marginal models give an average response for
observations sharing the same covariates as a function of the covariates (Zeger, Liang,
& Albert, 1988). In other words, for every one-unit increase in a covariate across the
population, GEE tells the user how much the average response would change (Zorn,
2001). GEEs estimate regression coefficients and standard errors with sampling distri-
butions that are asymptotically normal (Liang & Zeger, 1986), can be applied to test
main effects and interactions, and can be used to evaluate categorical or continuous
independent variables. GEE estimates are the same as those produced by OLS regres-
sion when the dependent variable is normally distributed and no correlation within
response is assumed. Test statistics have been developed that allow users to test
hypotheses regarding parameter estimates in a method analogous to those used in test-
ing coefficients from normal-errors regression methods (Rotnitzky & Jewell, 1990),
including linear regression and repeated-measures ANOVA.

GEEs start with maximum-likelihood estimation of our regression parameters (β)
and the variance calculated using a link function, which is a transformation function
that allows the dependent variable to be expressed as a vector of parameter estimates
(y = β0 + β1X1 + β2X2 + β3X3 . . .) in the form of an additive model. The GEEs also use a
variance function that is a transformation matrix with a value calculated from the
observed mean that is used in calculating the variances of the parameters that permit
nonconstant variances for values of the mean because they can depend on a specified
function of the mean (McCullagh & Nelder, 1989). The outcome produces both a
matrix of the βs and a matrix with the inverse of the variance. If we assume the data are
correlated, the variances are multiplied against a working matrix of correlation coeffi-
cients that corrects for correlation within subjects or panels. This matrix can be either
specified by the researcher or estimated by the GEE model in a form that matches the
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expected correlation structure within the subject or cluster. If we assume the observa-
tions are independent, this variance matrix is then transformed into a column of error
terms through matrix multiplication with an identity matrix, which has all 1s on the
diagonal and therefore produces no change in the parameter estimates.

The output from these equations is then used in starting the procedure all over again
in an iteratively reweighted least squares procedure that involves minimizing the
extent of change in the parameter estimates from a perfectly fitted regression model
(Gardner et al., 1995; Hardin & Hilbe, 2003; Liang & Zeger, 1986; McCullagh &
Nelder, 1989). As the size of these changes compared to the prior iteration approaches
zero, the parameter estimates (βs and standard errors) stabilize. Specification of the
correct form of the correlation of responses increases the efficiency of these estimates
(Fitzmaurice, 1995; Hardin & Hilbe, 2003), which is of concern particularly when the
correlation within responses is high (Diggle et al., 2002; Zorn, 2001). However, the
model is robust to errors in the specification of correlation structure because estimates
of the regression parameters remain consistent; therefore, the efficiency gains from
exact specification of the structure are usually slight (Liang & Zeger, 1986). Fitting a
GEE model requires the user to specify (a) the link function to be used, (b) the distribu-
tion of the dependent variable, and (c) the correlation structure of the dependent vari-
able. Details on how to make these three decisions that have to be made will be
discussed in turn below.

What Is the Best Link Function?

To model the expected value of the marginal response for the population µi = E(yi)
as a linear combination of the covariates, the user must specify a link transformation
function that will allow the dependent variable to be expressed as a vector of parameter
estimates (β) in the form of an additive model (McCullagh & Nelder, 1989). Harrison
(2002) noted that the link function is what “makes [generalized linear modeling] tech-
niques part of a larger family of log-linear models; nonlinear and distinct from multi-
ple linear regression in the link function but linear and familiar in terms of the string of
regression parameters” (p. 454). An example of a link function would be the logit link
for binary response variables. In this case, the covariates would be transformed by the
log of the odds ratio (the ratio of a response of “1” in the data to a response of “0”).
Users are not necessarily restricted to a single link function for the distribution of the
data specified in the next step.

The choices available for the link function are shown in the appendix. The basic
link function is the identity link function, which involves no transformation of µ
before construction of the matrix of βs, and this is used for normally distributed data.
The distribution of a dependent variable generally limits the user’s choices with refer-
ence to the link function used. The logit link is the standard linking function for binary
dependent variables. This link allows for the regression equation to map the interval
from 0 to 1 and is expressed as g(x) = log[µ/(1 – µ)]. In cases in which counted data are
being modeled with Poisson regression, the most appropriate link function involves
modeling the logarithm of the mean. Regression coefficients represent the expected
change in the log of the mean of the dependent variable for each change in a covariate
(Gardner et al., 1995; McCullagh & Nelder, 1989). Other link functions available to
users include the probit link for conducting cumulative predictive analysis of binary or
ordered dependent variables and the cumulative logit, which is useful for analysis of
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ordered multinomial data. The regression coefficients that result from GEE models for
logit, probit, and log links need to be exponentiated before they are meaningful.

What Is the Distribution of My Response Variable?

A second step involves specifying the distribution of the outcome variable so that
the variance might be calculated as a function of the mean response calculated above
(Hardin & Hilbe, 2003). GEEs permit specification of distributions from the exponen-
tial family of distributions, which includes normal, inverse normal, binomial, Poisson,
negative binomial, and Gamma distributions. As in generalized linear models, the
variance needs to be expressed as a function of the mean; this is then incorporated in
the calculation of the covariance matrix by multiplying the components against an N ×
N matrix (W) with a value Wi on the diagonal that is determined by the variance func-
tion. For Poisson distributions, that figure is µ; for binary data, it is µ (1 – µ); and for
normally distributed data, it is 1 (Gardner et al., 1995; McCullagh & Nelder, 1989). As
Gardner and colleagues (1995) showed, misspecification of the link function or the
variance function can have important consequences, for example, specifying a normal
distribution when the data are counted can lead to incorrect statistical conclusions. The
appendix displays appropriate link and variance functions for specific distributions of
the outcome variable.

Although the specification of the distribution is important, users do not need to be
precise in the specification of the variance functions for the parameter estimates to
have a sampling distribution that is approximately normal (Liang & Zeger, 1986). This
is helpful because it is difficult to know the exact covariance structure (Horton &
Lipsitz, 1999); the variances derived from the data may be lower or higher than those
assumed in the model (the data would be underdispersed or overdispersed) and there-
fore the data may not exactly fit a distribution assumed—the variance estimate should
account for this (Gardner et al., 1995). Because the variance estimator that is used in
generalized linear models assumes independence of observations, in developing the
GEE model, Zeger and Liang (1986) extended use of a method of estimating the vari-
ance that incorporates the correlation of the observations and produces variance esti-
mates (but not regression coefficients) that are consistent in cases in which the specifi-
cation of the variance function is not exactly correct (Diggle et al., 2002; Hardin &
Hilbe, 2003; Wedderburn, 1974; Zeger & Liang, 1986).

In fitting a GEE (or any generalized linear model), the user should make every rea-
sonable effort to correctly specify the distribution of the response variable so that the
variance can be efficiently calculated as a function of the mean and the regression coef-
ficients can be properly interpreted (McCullagh & Nelder, 1989). Specifying a Pois-
son distribution with a binary distribution (and vice versa) is a major error that can lead
to mistakes regarding inferences about regression parameters. In Example 1 below, I
show how a change in the distribution specification for the GEE models leads to a
researcher’s reaching different conclusions.

Generally, the user will have some prior knowledge of the distribution of the
response variable. As a rule, if the responses are binary data, users should specify the
binomial distribution. In cases in which the responses are counted, users should first
select a Poisson distribution and then examine the extent of dispersion in the outcome
predictor. When the variances derived from the data are higher or lower than those
assumed in the model, the data may be over- or underdispersed. When analyzing
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counted data, a negative binomial distribution should be specified in cases in which the
dispersion is high (Gardner et al., 1995). In cases in which users are faced with a de-
pendent variable that is an ordered multinomial response, multinomial distributions
can be specified.

What Is the Likely Form of Correlation
Within My Response Variable?

A third step involves specification of the form of correlation of responses within
subjects or nested within group in the sample. It is this working correlation matrix that
allows GEEs to estimate models that account for the correlation of the responses
(Liang & Zeger, 1986). Users of GEEs have several options to select from in specify-
ing the form of the correlation matrix. This specification will differ based on the nature
of the data collected. “The goal of selecting a working correlation structure is to esti-
mate β more efficiently” (Pan, 2001, p. 122), and incorrect specification of the correla-
tion structure can affect the efficiency of the parameter estimates (Fitzmaurice, 1995).
Although GEE models are generally robust to misspecification of the correlation
structure (Liang & Zeger, 1986), in cases in which the specified structure does not
incorporate all of the information on the correlation of measurements within the clus-
ter, we can expect that inefficient estimators will result. Below, I review four common
options for the specification of the correlation structure of the data.

For data that are correlated within cluster over time, an autoregressive correlation
structure is specified to set the within-subject correlations as an exponential function
of this lag period, which is determined by the user. Users may specify that the within-
subject observations are equally correlated, which is referred to as an “exchangeable”
correlation structure. Where there is no logical ordering for observations within a clus-
ter (such as when data are clustered within subject or within an organizational unit but
not necessarily collected over time), an exchangeable correlation matrix should be
used (Horton & Lipsitz, 1999). This method is more appropriate in situations in which
data are clustered within a particular subject but are not time-series data. An example
of this could be where responses are correlated within an industry group on cross-
sectional data. Users may also permit the free estimation on the within-subject cor-
relation from the data. Such an unstructured working correlation matrix estimates all
possible correlations between within-subject responses and includes them in the esti-
mation of the variances (Fitzmaurice, Laird, & Rotnitzky, 1993). Finally, users may
assume that the responses within subject are independent of each other; this approach
sacrifices one of the two benefits of using GEE in that it does not account for within-
subject correlation but is still useful in model fitting (as a base model) and is currently
the only correlation matrix permitted for the analysis of ordered multinomial
responses in SAS.

Fitting GEE Regressions

Attention to issues of model selection and fitting issues for GEEs has lagged behind
the attention paid to extending distributional assumptions and other refinements in the
variance estimation processes (Pan, 2001). The process of selecting model terms and
the appropriate correlation structure for GEE models is complicated by the correla-
tions within subject. Because the observations are not independent of each other, the
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residuals are not independent, and therefore, common likelihood-based methods and
other measures of model fit from ordinary linear regression need to be adjusted. Zheng
(2000) introduced a simple extension of R2 statistics for GEE models of continuous,
binary, and counted responses that is referred to as “marginal R-square.” The test mea-
sures improvement in fit between the estimated model and the intercept-only (null)
model. The formula is very straightforward and requires the user to obtain predicted
values from the model after it is estimated and compare these against the actual values
and against the squared deviations of the observations from mean values for the
response variable.
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marginal R2 is interpreted as the amount of variance in the response variable that is ex-
plained by the fitted model (Hardin & Hilbe, 2003). It has roughly the same properties
as R2 measures do for regression models, with the exception that it can take a value of
less than zero when the model that is estimated does a worse job of predicting than the
intercept-only model and it reduces to an R2 measure when there is one measurement
per panel (T = 1). The GEE covariance matrix is not explicitly included in the calcula-
tion of this statistic. Zheng (2000) argued that “goodness of fit [for marginal models] is
concerned with the agreement between the response and the prediction. The
covariance matrix is only relevant to the point that it affects the fitted value through the
parameter estimates” (p. 1270). As shown in Example 1 below, this statistic is useful in
making decisions regarding the terms to add to a GEE model using a stepwise regres-
sion method.

In general, decisions about correlation structure should be guided first by theory; as
noted earlier, there are specific correlation structures that are appropriate for time-
dependent correlation structures (e.g., autoregressive) and some that are not (e.g.,
exchangeable). For cases in which users may be undecided between two structures,
Pan (2001) proposed a test that extends Akaike’s information criterion to allow com-
parison of covariance matrices under GEE models to the covariance matrix generated
from a model that assumes no correlation within cluster. Because these compare the
variance and magnitude of the squared deviations for an independence model to
models that assume different sorts of correlation (exchangeable, unstructured,
autoregressive, etc.) within subjects, Pan’s quasilikelihood under the independence
model information criterion (QIC) measure is helpful in selecting the appropriate cor-
relation structure. The correlation structure with the QIC score that is lowest (closest to
zero) is judged to be the best, although the QIC scores may not be meaningfully differ-
ent. In that case, users should select the model that makes the most sense theoretically.
Neither the QIC nor the marginal R2 measures are currently automatically computed
by the major statistical software packages such as SAS or STATA.
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Decisions about testing whether coefficients are equal to zero are most commonly
made using a Wald chi-square statistic first proposed by Rotnitzky and Jewell (1990).
The generalized Wald test statistic can be calculated as Tw = K(�γ – γ0)′( �VR)–1(�γ – γ0),
where the variance matrix ( �VR) is a variance estimate that incorporates the correlation
structure within subjects. This test is distributed as a chi-square test statistic with
degrees of freedom equal to the number of parameters being tested. It can be used to
test the significance of individual parameters or several parameters. The generalized
Wald test statistic for single-variable tests in GEE can generally be calculated by
squaring the z score for the parameter to be tested. In cases in which the researcher
faces singularity in the robust variance matrix and it cannot be inverted, when there are
fewer covariates than observations per group, a “working” Wald test is available that is
calculated using the inverse of the initial, model-based variance matrix (Hardin &
Hilbe, 2003). Researchers should take care in using either of these Wald test statistics
when the value of the regression parameter is large (Harrison, 2002), as the standard
errors used in calculating the test score may be too large. A case in which this might
become an issue would be if an unadjusted income covariate were included in a regres-
sion along with a series of 5-point scales.

An alternative measure is a likelihood-based measure that is calculated assuming
independence. The test statistic, called a “naïve likelihood ratio test” is calculated as 2
times the difference between the likelihood score for the unconstrained (intercept-
only) model and the likelihood for the constrained model with the covariates: T*

LR =
2[λ(�βt) – λ(�βIC)] (Hardin & Hilbe, 2003, p. 170). For population-averaged GEE mod-
els, the statistic follows a chi-square distribution with an adjusted degrees of freedom
that for a single covariate is calculated as the ratio of the variance in the GEE model
being tested to the variance of the variable in the independence model.

Residuals from GEE regression models should be checked for the presence of out-
lier values that may seriously affect the results (Diggle et al., 2002). Measures that test
for the influence of a panel or case in the regression equation are extensions of those
used in generalized linear models and are similar to those used in OLS regression
(Cook & Weisberg, 1982; Preisser & Qaqish, 1996). DFBETA measures the change in
the fitted coefficient vector when a case is removed and is a measure of influence that
can be used to analyze outliers and determine whether there are issues in the data that
need further investigation. A valuable visual test of the GEE model that has been esti-
mated is to request residual versus fitted plots for each individual panel. In visually
testing the residuals, a researcher should look for patterns that suggest a random distri-
bution of residuals; they should not be clustered around certain values (Hardin &
Hilbe, 2003). For example, if a researcher saw that there were a large number of resid-
uals with small negative values and a small number of high positive values, then differ-
ent distribution and correlation structures should be examined. Another example
would be the case in which there are changes in the pattern of the residuals across the
time periods; this could indicate that they depend on the panel identifier and/or on the
time identifier, and a different correlation structure should then be specified (Hardin &
Hilbe, 2003). Software programs that fit GEEs (including SAS and STATA) provide
users with the functionality to display residuals and DFBETA diagnostic statistics for
observations in the data set.
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Using GEEs to Analyze Data: Two Examples

As a demonstration, I will first demonstrate the application of GEEs in analyzing
the results of a longitudinal experiment with counted responses that are correlated
within subjects over time. The second analysis will involve normally distributed
response terms that are correlated not over time but within branch offices of an organi-
zation. These two examples will provide ample opportunity to demonstrate the steps
users should go through to determine when GEE models are needed and how to go
about fitting the most appropriate model based on the hypotheses to be tested and the
data that have been collected.

Example 1: Longitudinal Data
With Counted Responses

An analysis of data from a laboratory experiment offers the opportunity to show
how use of GEEs facilitates the analysis of correlated longitudinal data that are col-
lected with limited-range dependent variables. In this case, I will use data collected
from a recently conducted laboratory study that involved groups assembling Lego
objects over five consecutive sessions. The 52 groups were given 1 minute to view four
objects and select an object to assemble. During the assembly task, the group was
allowed to send only one person out of the room at a time to view the object. These data
were collected along with data on the time required to assemble the object, the size of
the group, and whether the group had selected a new object this week. Data were also
collected from group members on their level of satisfaction with other group mem-
bers. (See Table 1 for a data sample from three teams.) The hypotheses of interest
involved whether there were main effects for the object on the number of trips out of
the room, whether time (and therefore group learning) affected the number of trips
across trials, and whether group satisfaction and group size affected the number of
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Table 1
Sample Data for the First Three Groups in Simulation Example 1

Team Trial Object
New

Choice
Group
Size

Group
Cohesion Visits

1 1 1 0 3 4.5 3
1 2 1 0 3 5 1
1 3 1 0 3 5 0
1 4 1 0 3 4 0
1 5 4 1 3 3 0
2 1 2 0 5 4.67 7
2 2 4 1 5 5 3
2 3 4 0 5 5 0
2 4 4 0 5 4.67 0
2 5 4 0 5 4.67 5
3 1 1 0 5 4.33 9
3 2 1 0 5 5 6
3 3 1 0 5 4.5 4
3 4 1 0 5 4.67 2
3 5 1 0 5 3.67 1



trips. Three features of this data set require us to select a method different from OLS
for our analysis.

1. The responses are not normally distributed because they consist of a count of the num-
ber of trips out of the room. (See Figure 1 for a histogram of the distribution counts of
trips out of the room per trial.)

2. There are five responses within subject, and they are not independent (they are corre-
lated with each other).

3. There are time-dependent covariates. Group satisfaction changed over the course of the
study, and the groups were allowed to select a new object at each trial.

The model needs to take into account the fact that the number of trips for a group at
any trial is likely to be highly associated with prior observations for that group (see
Item 2 above), and therefore it is not an independent observation. As we noted earlier,
failure to account for nonindependence of observations can result in biased estimates
for the regression parameters and variances, especially when the responses are highly
correlated within subject. Each team can be expected to learn at an individual rate, and
thus each response across the five trials should be highly correlated over time.

For purposes of comparison of regression results under different distributional
assumptions, five regressions were run. The first three assumed no correlation within
subject and are designed to compare an OLS regression approach when assuming a
normal distribution of data against a logistic regression with a binomial dependent
variable created using a median split of the number of trips and a regression approach
that assumes a Poisson distribution. Then I compared the Poisson regression against
two models that assumed an autoregressive correlation structure and an unstructured
correlation structure within subject (see Table 2, columns 1-5).

The panel regressions that assume normal and binary distributions of the data are
clearly unsatisfactory. In the normal OLS regression model, we see that at certain lev-
els of the covariates, multiplying all of the observed values of the covariates by the βs
produces a negative value (the minimum fitted value that results is –1.06, see col-
umn 1), which is not appropriate for counted data. As Gardner and colleagues (1995)
noted,

Regression . . . models data in the sense that it maps vectors of predictors into a space
of expected values such that the ensemble of µis resembles the observations. A mini-
mal criterion for resemblance is that the range of the µis should correspond to the
range of y. (p. 394)

The OLS regression model assuming normality would lead us to substantively incor-
rect conclusions regarding the data and therefore must not be used. The binary model
with a dichotomized dependent variable failed to converge after 100 iterations, and in
viewing the incomplete results, it is clear that we would reach a different conclusion
about the significant impact of selecting a new object to build on the group’s perfor-
mance compared to the Poisson and the normal regression models (see Table 2, col-
umn 2). It is clear that specification of the proper (Poisson) distribution will increase
the usefulness of the regression estimates. Below, I outline the steps taken in fitting the
Poisson GEE regressions.

Before using GEEs in any software package, the researcher needs to do the follow-
ing (Stokes, 1999):
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Figure 1: Histograms for Dependent Variable in Example 1 by Trial
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1. specify the model parameter(s) of interest,
2. specify any interaction terms of interest,
3. specify the variables that indicate the clustering of the dependent variable responses in

the data (e.g., by case and trial, or by hospital or work unit),
4. specify the link function that will “linearize” the regression equation,
5. specify the distribution of the dependent variable,
6. specify the structure of the correlation of within-subject responses (the “working” cor-

relation matrix), and
7. identify and request the appropriate test statistics to be generated.

Our outcome of interest is the number of times the group sent someone out of the
room to look at the finished object (trips); these data are counted and therefore are not
normally distributed. Our covariates (Step 1) are selected based on the hypotheses of
the study; these variables include trial, group size, and group satisfaction. We also in-
clude two control variables: one for the difficulty of the object (1 through 4) and one
for whether the group selected a new object during the specific trial (a 0/1) variable. An
interaction term (Step 2) for Trial × Object was included to control for whether groups
constructing more complex objects experienced more difficulty in learning through-
out the experiment. The clustering variable (Step 3) is the group; each group will have
five (possibly) correlated responses, one for each trial. In statistical software packages
such as SAS or STATA, users need to specify both the cluster identifier (in this case,
the group number variable, ranging from 1 to 52) and the time variable (in this case, the
trial variable, ranging from 1 to 5). GEE output from software packages provides in-
formation on the form and number of the clusters used in the analysis to help the user
check whether this has been properly specified.

We will make tentative assumptions for the link, distribution, and correlation struc-
tures and use model fit and dispersion statistics to determine whether the mean and
variance are equivalent (a necessary assumption for Poisson regression) as well as our
theory to help us determine which model fits best. The link function (Step 4) for Pois-
son regression is generally a log link (McCullagh & Nelder, 1989); g(µ) = log(µ), and
the variance function (Step 5) is specified as the mean of the data: v(µ) = µ for Poisson
distributions. In setting the specification of the correlation of the data (Step 6), we will
test an independence model and compare it against two other models that are logically
based on the nature of the within-group correlation of the responses. Because the data
were collected in a longitudinal design, we expected the responses within the groups to
be correlated with each other over time. It makes sense that effective teams may
require less views of the object in Trial 1, and these teams will also require fewer views
in Trial 2, Trial 3, and so on.

For the Poisson GEE models shown in columns 3 through 5 of Table 2, the interpre-
tation of the signs of the raw coefficients of the main effects is straightforward. Posi-
tive values mean that increases in the covariate result in increased number of trips; the
bigger the group, for example, the greater the number of trips to view the model. A
negative sign for the coefficient of trial implies that the number of trips required
decreased over time. Because the log link function was specified, interpretation of the
value of the parameter estimates requires that they be exponentiated by taking the log
of the β coefficient estimates. These values are then interpreted as incidence rate ratios
similar to Poisson regression (Gardner et al., 1995) and are shown in Table 3. The coef-
ficients in a model using a logit link are different: They are odds ratios and represent
the odds that a value is 1 as opposed to 0 for increasing values of the covariate. In gen-
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eral, exponentiated coefficients are interpreted in GEE models in the same way they
are in nonlinear models such as logistic, Poisson, and probit analysis.

In comparing the results between the Poisson regression and the normal and binary
variables seem in columns 1 and 2 of Table 2, we see that we would reach substantively
different conclusions by using a regression approach that specified the wrong distribu-
tion. Note that the sign changes from positive for the variable trial (3.52) from the nor-
mal to negative in the three Poisson models seen in columns 3 through 5. The same
thing happens for the variable new choice, which was a time-dependent variable indi-
cating that the group had selected a different object in a particular trial over the pre-
vious trial. In the normal model, we would conclude that a new choice led to fewer
trips (β = –1.49, SE = 0.26, p < .001); in the Poisson models (columns 3-5), the sign is
reversed (and significant at p < .001), which implies (correctly) that groups facing a
novel task would require more trips outside the room to learn about the new object to
complete the task. These findings exemplify major points made by Liang and Zeger
(1986) and others regarding the critical nature of the task of specifying the distribution
in correctly modeling limited-range dependent variables (Diggle et al., 2002;
Harrison, 2002; McCullagh & Nelder, 1989).

The next step is to compare the GEE Poisson regression models and select the
appropriate model structure. Three models were tested against each other: the inde-
pendence, unstructured, and autoregressive patterns. The first thing to notice is that we
reach different statistical conclusions about the relationship between group size and
the number of trips out of the room. Under the independence and autoregressive mod-
els, the variable is nonsignificant (p = .60 and p = .62, respectively) compared to the
unstructured model, where it is significant at the p = .01 level. The size of the raw co-
efficient is more than 4 times greater (.18 vs. .04) in the unstructured model. The dif-
ference in the coefficients is created primarily by the differences in the estimated cor-
relation structures used by the model. In Table 4, I compare the correlation structures
that were used in the models. The unstructured model estimates within-panel correla-
tions that are generally higher over time and that do not decline over time when com-
pared against the autoregressive model, which requires a declining level of correlation
within subject over time.
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Table 3
Exponentiated Coefficients for Poisson Regressions for Example 1

Method

GEE,
Poisson Distribution,

Independent Correlation

GEE,
Poisson Distribution,

Unstructured Correlation

GEE, Poisson
Distribution, One-Period

Autoregressive Correlation

Object 0.75** 0.541** 0.75**
New choice 0.82 0.706* 0.82
Trial 3.62*** 2.65*** 3.24***
Size 1.04 1.20* 1.04
Group 0.98 0.92 0.94
Trial × Object 0.96 1.00 0.95

*p < .05. **p < .01. ***p < .001.



We conclude that the unstructured model is superior for two reasons. First, it is the
least restrictive in terms of modeling the true correlation structure within subject. The
values of the correlations are not trivial in this case, sometimes reaching as high as .67
(Trial 2-Trial 5). The correlations do not decrease over time, as assumed by an auto-
regressive correlation structure. Ignoring the magnitude of these correlations means
the autoregressive model creates estimates that are less efficient than the unstructured
model because they do not use all the information about the parameters (Fitzmaurice,
1995). Second, the nature of the data involves groups’repeating the same act over sub-
sequent events, and there is no reason to expect that the correlation of the responses
between trials would decrease over time as it would in an autoregressive model. No
treatment was introduced during the course of the trials, and so the responses within
the group should remain consistent across several trials. Finally, comparison of Pan’s
(2001) QIC statistic for the unstructured model shows that it is closer to zero relative to
the scores for the independence and autoregressive models, implying that the model is
a better fit.

Example 2: Normally Distributed Responses
Correlated Within Branch Offices

In organizational research, clustered data arise outside of longitudinal study
designs. In a cross-sectional study of an organization with a number of branch offices,
a researcher may believe that clustering of responses within each branch office may
create nonindependence in the responses and therefore affect the ability to test hypoth-
eses in the same way that correlation of responses over time affects longitudinal
designs. GEE regression models are appropriate for estimating relationships in such
cases; indeed, there are few differences in constructing the model in panel-clustered
data cases compared to cases of longitudinal clustering. This example is helpful in that
it also shows how the benefits of using GEE over OLS approaches are smaller when
correlations within the panel are low as opposed to the higher correlations seen in
Example 1.
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Table 4
Comparison of Within-Group Correlation Estimates for Example 1

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

Unstructured correlation
Trial 1 1
Trial 2 .17 1
Trial 3 .24 .06 1
Trial 4 .20 .35 .28 1
Trial 5 .38 .66 .13 .22 1

One-period autoregressive correlation
Trial 1 1
Trial 2 .15 1
Trial 3 .02 .15 1
Trial 4 .00 .02 .15 1
Trial 5 .00 .00 .02 .15 1



Hierarchical linear modeling (HLM) is an alternative approach to analyzing these
data. The primary difference between HLM and GEE approaches lies in HLM’s
assumption that the random effects are normally distributed and on the researchers’
assumptions regarding the structure of the variances and covariances estimated. When
the number of clusters is large, GEEs do not require such assumptions to be made to
produce estimates with good statistical properties. HLM software (release 5.05) pro-
vides users with a helpful comparison table of the estimates from GEEs and HLM
approaches to nested data so that users can test and compare the extent to which such
violations lead to changes in conclusions.

As an illustration of the application of GEE models, I analyzed data on employee
attitudes that were collected from 50 hospitals of a medical firm. A simple regression
test was constructed to test a hypothesis relating the quality of self-reported satisfac-
tion with supervision, growth, pay, and security to a measure of values commitment
relative to the parent corporation. But because there are different supervisory referents
at each location, there may be clustering of responses within hospitals that will affect
the estimates, which will affect the efficiency of our parameter estimates. In this case, I
will run a normal regression model and a regression model with robust standard errors
estimated and compare it against two GEE models: one that accounts for correlation
within hospital and one that does not.

The first step is to identify the terms in the model; we are fitting a very basic model
with a 5-point scale (commitment to the parent company) as the dependent variable
and 5-point scale responses on the facet satisfaction measures. There are no interac-
tions proposed in any of the hypotheses, and so we will not estimate interaction terms
in the model (Step 2). Our responses may be correlated within hospital, so our clusters
(Step 3) are specified to be on that variable. This will result in 50 clusters ranging in
size from 1 to 50 employees, with 411 total observations.

We assume that the data from our 5-point scale are normally distributed, which
follows traditional assumptions regarding the distribution of responses in industrial/
organizational psychology and organizational research. The link function (Step 4) for
normally distributed dependent variables is specified as the “identity” link (which
involves transformation of regression coefficients by multiplying them by a factor of
1), and our variance function (Step 5) is set as that for a normally distributed response
variable. Our correlation within hospital is not time dependent and therefore we will
test (Step 6) an exchangeable working correlation matrix against an independence cor-
relation matrix and an unstructured correlation matrix for the model that fits best. No
special test statistics (Step 7) will be needed to test our hypotheses, as the βs and stan-
dard errors produced by the models are adequate for testing this simple hypothesis.

Results from the normal regression model are compared against the GEE model in
Table 5. As expected, the inclusion of robust standard errors as opposed to standard
errors that do not incorporate the correlation within hospital (also referred to as
“naïve” standard errors) makes both the normal regression model and the two GEE
models more conservative; the standard errors of the parameter estimates are all higher
than the naïve model (Model 1). The differences between the estimates from the GEE
model (Model 3) that assumes independence and the GEE model that assumes an
exchangeable correlation (Model 4) are quite small, but they are meaningful. The rea-
son for this is that the correlation within clusters is estimated to be quite small: In this
case, it is estimated by the GEE model as .0244. The differences in analytic power that
come from the incorporation of the correlation structure in the GEE regression are
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small in this case. Recall that when correlation levels within the cluster are low, the dif-
ference in parameter estimates between GEE regression and models (such as OLS)
that assume independence will be small (Diggle et al., 2002). Although this might lead
to our reaching a different conclusion with regard to satisfaction with growth opportu-
nities (GROWTH) and commitment to the parent in that the z score under the indepen-
dence model is 1.96 (p = .05) and under the exchangeable model is 2.04 (p = .04), in
general, GEEs do not result in much change in results when correlation within clusters
is low. In testing the difference in the marginal R2 between the independence and
exchangeable models, we find that the independence model provides a higher score.
But in principle, one should reject an OLS or independence model in favor of a GEE
regression whenever there is reason to suspect correlation within subject because for
higher values of this correlation, the efficiency losses in the parameter estimates is
much greater, and researchers as a rule should favor methods that are expected to
produce the most efficient and unbiased parameter estimates (Diggle et al., 2002;
Fitzmaurice, 1995).

Cautions Regarding GEE

Users should be cautioned that the estimate of the variance produced under GEE
models could be highly biased when the number of subjects within which observations
are nested is small (Prentice, 1988). Horton and Lipsitz (1999) suggested that the GEE
variance estimate be used only when there are more than 20 such clusters. In data sets
in which there are a low number of these clusters, the standard errors that are con-
structed ignoring correlation within subject (naïve/model-based standard errors) may
have better statistical properties in that they will have sampling distributions closer to
normal than the empirical variance estimates that incorporate the correlation within
subject.

Despite the advances of Zheng (2000) and Pan (2001), goodness-of-fit statistics for
GEEs that would function as the equivalent to measures such as the magnitude of the
squared differences of observed versus predicted values or dispersion measures are
not widely accepted for most classes of dependent variables beyond binary data or for
different correlation structures (Barnhart & Williamson, 1998; Horton et al., 1999;
Sheu, 2000; Stokes, 1999). The statistics may be calculated only for certain distribu-
tions when making certain assumptions about within-subject correlation (e.g., inde-
pendence or exchangeable equal correlation) that do not permit the user to fully benefit
from GEE modeling. Because the response variables in GEEs are generally not inde-
pendent, the residuals from models fitted to these responses are not independent and
thus are not appropriate for use in the development of these statistics (Barnhart & Wil-
liamson, 1998; Zorn, 2001). The goodness-of-fit measures of Zheng (2000) (marginal
R2 and the concordance correlation) and Pan (2001) presented here have the benefit of
simplicity and ease of interpretation, but they have not been used extensively in
biostatistics and health research literature, in which GEEs originated and are most
widely used. Another measure that shows some promise is chi-square distributed
goodness-of-fit statistics for binary response variables developed by Barnhart and
Williamson (1998). Given the uncertain status of this area of research on GEE applica-
tions, users of current statistical programs should be cautioned that although the gen-
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eralized linear model algorithm that is used when running GEEs may produce a devi-
ance or chi-square statistic for a GEE model, such a statistic is interpretable only under
certain conditions. For example, the Wald chi-square statistic presented by STATA in
the output for GEEs is a test of whether all of the variables in the estimate are different
from each other and different from zero and is not a goodness-of-fit measure. It is gen-
erally not interpretable when one wants to model different correlations within subjects
across different time periods, such as in an autoregressive correlation structure in
which, for example, the t1 – t2 correlation is accounted for differently from the t1 – t3

correlation. In addition, as noted earlier, the Wald tests for individual parameters may
be sensitive to large differences in the scale of the different independent variables
(Harrison, 2002).

The scale parameter specified also has an important impact on the GEE parameter
estimates, and users must be cautioned that the two software programs (SAS and
STATA) used to estimate the models shown in this article have different default set-
tings for the scale parameter that result in the programs’ producing different results
from the same data set unless this is changed. SAS users can use the “V6CORR” com-
mand to obtain similar results from the two programs.

There are other issues for which users of GEEs should be alert. Errors in the specifi-
cation of the relationship of responses within subjects in the form of the working cor-
relation matrix can lead to a loss of efficiency in models and lead to different assess-
ments of standard errors. However, because the method uses the initial parameter
estimates and residuals to reset the covariance matrix, it is robust to misspecification of
the initial relationship of the within-subject correlations (Zeger & Liang, 1986). As
noted earlier, researchers should pay close attention to specifying the distribution of
the dependent variable and the link function that will be used to linearize the regression
equation. Errors in the calculation of parameter estimates can be made if these are
incorrectly specified (Gardner et al., 1995; McCullagh & Nelder, 1989). If the
researcher is unclear as to the form of the distribution of the dependent variable, it is a
good practice to use statistical tests to remove this doubt. For example, prior to running
a GEE model to analyze their data, Welbourne and Trevor (2000) first ran a regression-
based test to determine that the distribution of their dependent variable fit a negative
binomial as opposed to a Poisson distribution. GEEs can handle missing data in longi-
tudinal studies under the assumption that such data are missing completely at random,
but when the probability of missing data may depend on previous values of the depen-
dent variable, the parameter estimates may be compromised (Zorn, 2001). Another
issue is that in cases in which there is high correlation within clusters, GEE models
estimated using an unstructured correlation matrix might take a long time to converge.
Software packages such as SAS or STATA allow the user to increase the maximum
number of iterations that the model will go through to generate the best set of param-
eter estimates.

Users should also be alert for the form of the missing data in their analysis, espe-
cially the relationships that may be compromised by subject attrition. GEE assumes
that the data are missing completely at random, and the model results may not be inter-
pretable if the attrition in the data set is associated with one of the covariates or the de-
pendent variable. Researchers using longitudinal data sets are referred to Goodman
and Blum (1996) for a framework for assessing the effects of attrition on data relation-
ships in longitudinal studies.
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Conclusion

GEEs offer researchers and managers the opportunity to use longitudinal designs
with organizational topics that do not lend themselves to normally distributed
responses. Management researchers are frequently faced with dependent variables
that do not follow normal distributions, and in the past, researchers applied suboptimal
methods such as transformations to convert their data prior to analysis. When faced
with the challenge of collecting data such as event count gs and “yes” or “no” response
variables, greater analytic precision can be gained by instead applying GEEs to the
data. The method is already being applied in social sciences such as political science
(Zorn, 2001) and criminology (Conaway & Lohr, 1994), and it is extensively in use in
the life sciences such as epidemiology and gerontology research. There have been sev-
eral recent examples of the use of the method in longitudinal organizational research in
field settings, including Welbourne and Trevor (2000) and in repeated measure labora-
tory experiments, such as those conducted by Lepine, Colquitt, and Erez (2000).

The use of GEE regression models in management research has been limited since
their introduction in 1986. Writing in 1989, Harrison and Hulin favorably highlighted
the potential of GEEs in their review of the applicability of event history models for
studying absenteeism. They noted that GEE models use all the data available for each
subject, account for correlations between binary outcomes across time within the
same individual, and allow for specification of both time-varying and individual dif-
ference variables. They pointed out that the models have a “strong potential” for appli-
cation to attendance data (Harrison & Hulin, 1989, p. 315). Despite reiteration of the
point 4 years later (Martocchio & Harrison, 1993), GEE regression is still not
generally used in research on absenteeism.

As with any method that is still being perfected, researchers are advised to pay close
attention to the emerging body of literature on analysis of GEE data. One area that
researchers should pay close attention to is the development of goodness-of-fit tests
for GEE models. Despite the introduction of several new methods and recent advances
over the past several years (Barnhart & Williamson, 1998; Horton et al., 1999; Zheng,
2000), there is still no universally accepted test for goodness of fit for GEE models in
use that extends beyond binary dependent variables. Another area in which GEE
research and theory is still developing is in the stability of the models in handling
missing data.

Research that uses longitudinal designs in these areas will increase the strength of
findings of relationships and perhaps uncover new relationships that have been missed
because of suboptimal treatment of response variable data. GEE approaches to regres-
sion analysis provide researchers with a means of reaching easily interpretable conclu-
sions regarding limited-range dependent variables. Users of GEEs can also be more
confident in their statistical conclusions regarding data that arise from longitudinal
and nested research designs, particularly when the dependent variable is highly corre-
lated within subject because the method produces parameter estimates that are more
efficient and unbiased than is OLS regression. The increased use of this method in
organizational research can facilitate expanded use of longitudinal research in fields
such as absenteeism, strategic management, innovation, strategy, and organizational
theory, where counted data are frequently used as dependent variables. Researchers in
each of these areas will benefit from the versatility of this emerging approach to data
analysis.
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APPENDIX
Distribution Choices and Link Functions Available

in Generalized Estimating Equations (GEEs)

The link function that is selected will vary depending on the distribution of the underlying
dependent variable. Certain dependent variables permit multiple link functions depending on
how the user wishes to interpret the coefficients (as cumulative probabilities, for example). This
appendix provides some brief guidance on the different link functions available in GEE models.

Normal Distribution

Identity link: This fits the same model as the general linear model

Power link: Any power transformation (e.g., square root, square of variable)

Reciprocal link: Links using reciprocal of dependent variable (1/µ)

Binomial Distribution (1/0 Data)

Logit link: Fits logistic regression models

Probit link: Fits cumulative probability functions

Power link: Any power transformation (e.g., square root, square of variable)

Reciprocal link: Links using reciprocal of dependent variable (1/µ)

Poisson Distribution (Counted Data)

Log link

Power link: Any power transformation (e.g., square root, square of variable)

Reciprocal link: Links using reciprocal of dependent variable (1/µ)

Negative Binomial Distribution

Power link: Any power transformation (e.g., square root, square of variable)

Gamma Distribution

Power link: Any power transformation (e.g., square root, square of variable)

Reciprocal link: Links using reciprocal of dependent variable (1/µ)

Multinomial Distribution*

Cumulative logit link

*At the time of this writing, analysis of multinomial distributed dependent variables was permitted
in SAS using only the cumulative logit link and the independence assumption regarding correla-
tion of responses.
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