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INTRODUCTION TO MODERN MODELLING METHODS2

Frequently in the social sciences, our data are nested, clustered or hierarchical in nature: 

individual observations are nested within a hierarchical structure. ‘The existence of such 

data hierarchies is neither accidental nor ignorable’ (Goldstein, 2011, p. 1). Examples 

of naturally occurring hierarchies include students nested within classrooms, teachers 

nested within schools, schools nested within districts, children nested within families, 

patients nested within hospitals, workers nested within companies, husbands and wives 

nested within couples (dyads) or even observations across time nested within individuals. 

‘Once you know that hierarchies exist, you see them everywhere’ (Kreft & de Leeuw, 

1998, p. 1).

Multilevel modelling (MLM) provides a technique for analysing such data. It 

accounts for the hierarchical structure of the data and the complexity that such 

structure introduces in terms of correctly modelling variability (Snijders & Bosker, 

2012). Multilevel models are often referred to as hierarchical linear models, mixed 

models, mixed-effects models or random-effects models. Researchers often use these 

terms interchangeably, although there are slight differences in their meanings. For 

instance, hierarchical linear model is a more circumscribed term than the others: 

it assumes a normally distributed outcome variable. In contrast, mixed-effects or 

random-effects models are more general than multilevel models: they denote non-

independence within a data set, but that non-independence does not necessarily 

need to be hierarchically nested.

In this book, we focus on one particular type of random-effects model: the multi-

level model, in which units are hierarchically nested within higher level structures. 

Other common random-effects models include cross-classified random-effects mod-

els, which account for non-independence that is crossed, rather than nested. For 

example, in longitudinal educational studies, students often change teachers or trans-

fer from one school to another; hence, students experience distinct combinations of 

teachers or schools. In such scenarios, students are cross-classified by two teachers 

or two schools. Multiple-membership models allow for membership in multiple clus-

ters simultaneously. Although cross-classified and multiple-membership models are 

random-effects models, they are not purely multilevel models because they do not 

exhibit clean, hierarchical data structures. This book focuses on hierarchical linear 

modelling (HLM)/multilevel modelling (MLM). Interested readers should refer 

to the following resources for more information about cross-classified and multiple-

membership models: Airoldi et al. (2015), Beretvas (2008) or Fielding and Goldstein 

(2006). In addition, this book assumes normally-distributed continuous outcomes. To 

learn more about using MLM techniques with non-normal (binary, ordinal or count) 

outcomes, see O’Connell and McCoach (2008) or Raudenbush and Bryk (2002).

In MLM, organisational models are models in which people are clustered within 

hierarchical structures such as companies, schools, hospitals or towns. Multilevel models 
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Clustering and dependenCe: Our entry intO multilevel mOdelling 3

also prove useful in the analysis of longitudinal data, where observations across time are 

nested within individuals.

In this chapter, we introduce the MLM framework and discuss two-level multilevel 

models in which people are clustered within organisations or groups. We begin our 

introduction to MLM by introducing basic terms and ideas of MLM as well as intro-

ducing one of the most fundamental concepts in the analysis of clustered data: 

the intra-class correlation coefficient (ICC). Subsequently, Chapter 2 provides 

an overview of standard two-level multilevel organisational models, and Chapter 3 

illustrates fundamental MLM techniques with an applied example. In Chapters 4–6, 

we turn our attention to structural equation modelling. In Chapters 7 and 8, we 

return to MLM, demonstrating its application to individual growth models.

nested data and non-independence

Most traditional statistical analyses assume that observations are independent of 

each other. In other words, the assumption of independence means that subjects’ 

responses are not correlated with each other. For example, imagine that a survey 

company administers a survey to a sample of participants. Under the assumption 

of independence, one participant’s responses do not correlate with the responses of 

any of the other participants. The assumption of independence might be reasonable 

when data are randomly sampled from a large population. However, the responses of 

people clustered within naturally occurring organisational units (e.g. schools, class-

rooms, hospitals, companies) are likely to exhibit some degree of relatedness, given 

that they were sampled from the same organisational unit. For instance, students who 

receive instruction together in the same classroom, delivered by the same teacher, 

tend to be more similar in their achievement (and other educational outcomes) than 

students instructed by different teachers.

Observations within a given cluster often exhibit some degree of dependence 

(or interdependency). In such a scenario, violating the assumption of independ-

ence produces incorrect standard errors that are smaller than they should be. 

Therefore, inferential statistical tests that violate the assumption of independence 

have inflated Type I error rates: they produce statistically significant effects more 

often than they should. The Type I error rate is the probability of rejecting the null 

hypothesis when the null hypothesis is correct. Alpha, the desired/assumed Type I error 

rate, is commonly set at .05. However, alpha may not equal the actual Type I error 

rate if we fail to meet the assumptions of our statistical test (i.e. normality, inde-

pendence, homoscedasticity etc.). MLM techniques allow researchers to model the 

relatedness of observations within clusters explicitly. As a result, the standard errors 
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INTRODUCTION TO MODERN MODELLING METHODS4

from multilevel analyses account for the clustered nature of the data, resulting in 

more accurate Type I error rates.

The advantages of MLM are not purely statistical. Substantively, it may be of great 

interest to understand the degree to which people from the same cluster are similar 

to each other and to identify variables that help predict variability both within and 

across clusters. Multilevel analyses allow us to exploit the information contained 

in clustered samples and to partition the variance in the outcome variable into 

between-cluster variance and within-cluster variance. We can also use pre-

dictors at both the individual level (level 1) and the group level (level 2) to try to 

explain this between- and within-cluster variability in the outcome variable.

In general, MLM techniques allow researchers to model multiple levels of a hier-

archy simultaneously, partition variance across the levels of analysis and examine 

relationships and interactions among variables that occur at multiple levels of a hier-

archy. In MLM, a level is ‘a focal plane in social, psychological, or physical space that 

exists within a hierarchical structure’ (Gully & Phillips, 2019, p. 11). Generally, the 

levels of interest within an analysis depend on the phenomena and research questions 

(Gully & Phillips, 2019). For example, in a study of instructional techniques, where 

students are nested within teachers, students are level-1 units and teachers are level-2 

units. In contrast, in a study of teachers’ perceptions of their principals’ leadership, 

teachers are nested within principals. In this case, teachers are level-1 units and prin-

cipals are level-2 units. Often, researchers use the term organisational model to refer to 

cross-sectional MLM where individuals (level-1 units) are clustered within some sort 

of organisational, administrative, social or political hierarchy (level-2 units).

Traditional correlations and regression-based approaches estimate the relationship 

between two variables. However, standard single-level analyses (which ignore the 

clustered/hierarchical nature of the data) assume that the relationship between the 

variables is constant across the entire sample. MLM allows the relationships among 

key substantive variables to randomly vary across clusters. For example, the relation-

ship between socio-economic status (SES) and achievement may vary by school. In 

some schools, student SES may be a strong (positive) predictor of students’ subse-

quent academic achievement; in other schools, SES may be completely unrelated to 

academic achievement (Raudenbush & Bryk, 2002).

Additionally, in MLM, researchers can study relationships among variables that 

occur at multiple levels of the data hierarchy as well as potential interactions among 

variables at multiple levels while allowing relationships among lower-level variables 

to randomly vary by cluster. How much of the between-cluster variability in these 

relationships (or in the cluster means) can be explained by cluster-level variables? 

For instance, imagine we want to study the relationships between student ability, 

teaching style and academic achievement. The data are clustered: students are nested 

within teachers (classrooms). For simplicity, assume that each teacher teaches only 
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Clustering and dependenCe: Our entry intO multilevel mOdelling 5

one class. Therefore, the teacher and classroom levels are synonymous, and student 

ability varies across different students taught by the same teacher. Consequently, 

student ability is an individual-level (or level-1) variable. Although teaching style 

varies across teachers, every student within a given teacher’s class is exposed to a 

single teacher with one individual teaching style. Therefore, teaching style varies 

across classrooms, but not within classrooms, so teaching style is a classroom/teacher 

(cluster) level, or level-2 variable.

Of course, the effect of a teacher’s teaching style does not necessarily have the same 

effect on all students. In our current example, we might hypothesise that teaching 

style moderates the effect of student ability on student achievement. In other words, 

the relationship between student ability and student achievement varies as a func-

tion of teachers’ teaching style. For example, some teachers may strive to ensure that 

all students in the class meet the same set of grade-level standards and are exposed 

to the same content at the same level, ensuring that all students in the class have the 

same set of skills and knowledge. In contrast, other teachers may differentiate instruc-

tion to meet the needs of individual students. We hypothesise that the relationship 

between ability and achievement would likely be stronger in the classrooms where 

teachers differentiate instruction than in the standards-based classrooms. In a stand-

ard linear regression model, we can include an interaction between teaching style 

and student ability. However, the multilevel framework allows the slope for the effect 

of students’ ability on achievement to randomly vary across classrooms, even after 

controlling for all teacher- and student-level variables in the model. If the ability/

achievement slope randomly varies, even after including teaching style in the model, 

the relationship between ability and achievement does indeed vary across classrooms 

but the teachers’ teaching style does not fully explain the between-class variabil-

ity in the ability/achievement relationship. Perhaps, other omitted classroom-level 

variables may explain the variability in the ability/achievement relationship across 

classes. MLM allows us to ask and answer more nuanced questions than are possible 

within traditional regression analyses.

As the preceding paragraphs highlight, multilevel models are incredibly useful for 

studying organisational contexts like schools, companies or families. However, many 

other types of data exhibit dependence. For instance, multiple observations collected 

on the same person represent another form of nested data. Growth curve and other 

longitudinal analyses can be reframed as multilevel models, in which observations 

across time are nested within individuals. Using the MLM framework, we partition 

residual or error variance into within-person residual variance and between- 

person residual variance. In such a scenario, between-person residual variance rep-

resents between-person variability in any randomly varying level-1 parameters of 

interest, such as the intercept (which we commonly centre to represent initial status 

in growth models) and the growth slope. Within-person residual variance represents 
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INTRODUCTION TO MODERN MODELLING METHODS6

the variance of time-specific residuals, which is generally referred to as measurement 

error. We explore multilevel growth models in Chapters 7 and 8 of this book and 

demonstrate how to reframe the basic MLM framework to analyse longitudinal data. 

However, for the remainder of Chapters 1 to 3, we focus exclusively on cross-sectional 

organisational models.

intra-class correlation coefficient

This section introduces one of the most fundamental concepts in MLM: the intraclass 

correlation coefficient (ICC). The ICC measures the proportion of the total variability 

in the outcome variable that can be explained by cluster membership. The ICC also 

provides an estimate of the expected correlation between two randomly drawn indi-

viduals from the same cluster (Hox et al., 2017).

Most traditional statistical tests (multiple regression, analysis of variance [ANOVA] 

etc.) assume that observations are independent. The assumption of independence 

means that cases ‘are not paired, dependent, correlated, or associated in any way’ 

(Glass & Hopkins, 1996, p. 295). Nested or clustered data violate this assumption 

because clustered observations tend to exhibit some degree of interdependence. In 

other words, observations nested within the same cluster tend to be more similar to 

each other on a given outcome variable than observations drawn from two differ-

ent clusters. This interdependence, resulting from the sampling design, affects the 

variance of the outcome, which in turn affects estimates of the standard errors for 

model parameters.

Of course, the degree of dependence also varies by outcome variable, and some 

outcome variables may not exhibit any discernible dependence, even though the 

observations are clustered. For example, students are clustered within classrooms, 

so we would expect to see that academic outcomes such as mathematics and read-

ing achievements exhibit some degree of within-class/within-teacher dependence. 

However, other variables may exhibit little to no dependence, even though they 

are clustered. Therefore, we compute the ICC separately for each outcome variable 

of interest.

To better understand this phenomenon, let’s imagine that a research assistant 

named Igor receives the task of surveying 1000 people about how many hours they 

sleep per night (on average). Instead of randomly sampling 1000 people, he decides 

that he can accomplish the task much more quickly if he samples 250 households 

(each of which has four members) and asks all members of each household to respond 

to the sleep survey. For simplicity, let’s assume that each of the 250 households are 

drawn from different neighbourhoods so that outside noise such as car alarms or 

sirens that affect one household do not affect any other households. Of course, in 
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Clustering and dependenCe: Our entry intO multilevel mOdelling 7

households where one member is not sleeping well, other members of the household 

also tend to sleep less well. (Classic sleep disturbances that affect the sleep patterns of 

entire households to some degree include crying babies, barking dogs, visitors, late or 

early household events etc.). However, in this scenario, there is no reason to believe 

that sleep patterns exhibit any dependencies across households.

So, what happens to variability in the outcome variable, sleep, within households? 

Because people’s sleep hours are more similar within a given household, the expected 

variability in sleep hours for members of the same household is smaller than the 

expected variability of members who reside in different households. Therefore, 

knowing the household in which a person resides can help explain some of the vari-

ability in sleep hours. This is between-cluster variability. Another way of thinking about 

between-cluster variability is to imagine computing the mean number of sleep hours 

for each household in the study. The degree to which those household-aggregated 

means vary across clusters (households) represents between-cluster variance. At first, it 

may seem counter-intuitive that similarities within clusters actually relate to between-

cluster variance. However, a quick thought experiment may help. Imagine that Igor 

samples households in Stepford, and in these households, every member must sleep 

exactly as much as the patriarch. In such a scenario, all members of each household 

have the exact same sleep hours. Therefore, all variance in the outcome variable 

(sleep hours) must be between-cluster variance; there is no within-cluster variance.

Of course, Stepford doesn’t actually exist. Even though people within the same 

household may be more similar to each other than to people from different house-

holds, they are not exactly the same. With clustered data, knowing the cluster helps 

to explain some (but not all) of the variability in the outcome variable of interest.

Instead, we can partition the total variability in sleep time into the portion that is 

within clusters (i.e. how much do members of the same household differ from their 

household average in terms of sleep time?) and the portion that is between clusters 

(i.e. how do households differ from each other in terms of sleep time?). The degree 

to which people within the same household (or cluster) differ from the household 

average is within-cluster variability. In other words, it is the (pooled) variability across 

people within the same cluster. Conceptually, between-cluster variability represents the 

variability in the cluster means. Between-cluster variance is analogous to aggregating 

data to the cluster level and computing cluster means for each cluster and then esti-

mating how much the cluster means vary.

The ICC describes how similar, or homogeneous, individuals are within clusters and 

how much they vary across clusters: it quantifies the degree of dependence, or the 

degree of relationship among units from the same cluster (Hox, 2010; Raudenbush 

& Bryk, 2002; Snijders & Bosker, 2012). The ICC is the proportion of between-cluster 

variance, or the proportion of the total variability in the outcome variable that can 

be explained by cluster membership. The calculation of the ICC (often symbolised 
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INTRODUCTION TO MODERN MODELLING METHODS8

as ρ, ‘rho’) involves partitioning the total variability in the outcome variable into 

within-cluster variance (σ 2) and between-cluster variance (τ00). To compute the ICC, 

we simply divide the between-cluster variability (τ00) by the total variability (τ00 + σ2), 

as the following equation shows:

�
�

� �
�

�
00

00
2  (1.1)

A large ICC indicates that there is a large degree of similarity within clusters (σ2 is 

small) and/or a large degree of variability across clusters (τ00 is large). An ICC of 1 

indicates that all observations within a cluster are perfect replicates of each other 

and all variability lies between clusters: the within-cluster variance is 0. An ICC of 0 

indicates that observations within a cluster are no more similar to each other than 

observations from different clusters: the between-cluster variance is 0. We expect a 

simple random sample from a population to have an ICC of 0; the assumption of 

independence is the assumption that the ICC = 0.

Returning to our sleep example, imagine the ICC (the proportion of between-cluster 

variability) is .40. This means 40% of the variance in sleep time lies between house-

holds and 60% of the variance in sleep time lies within households. It also means that 

the expected correlation in sleep time for two members of the same household is .40.

To recap, cluster means vary (between-cluster variance). People in the same cluster also 

differ from each other (though two people from a single cluster differ less than two 

randomly selected people) (within-cluster variance). The sum of the within- and between-

cluster variances represents total variance in the outcome variable. The ICC indicates the 

proportion of total variability explained by group membership; an ICC of 1.00 suggests 

members of each cluster are perfect replicates of one another (so, all variation occurs 

across clusters), whereas an ICC of .00 implies that cluster members are completely 

independent of one another (i.e. uncorrelated), akin to a theoretical random sample.

effective sample size

A concept related to the ICC is effective sample size (neff). Is Igor’s sample of 1000 peo-

ple within 250 households really the same as sampling 1000 people from 1000 different 

households? No – given the built-in dependence of people within the same household, 

Igor hasn’t really obtained as much information about people’s sleep habits as he would 

have if he had actually sampled 1000 people from 1000 different households.

So, why does ignoring this non-independence (as traditional tests of significance 

do) increase the possibility of making a Type I error (rejecting the null hypothesis 

when we should have failed to reject it)? Because people within clusters are more 

homogeneous than people from different clusters, the variance of the clustered 
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Clustering and dependenCe: Our entry intO multilevel mOdelling 9

data is smaller than the variance from a truly independent sample of observations. 

Therefore, treating clustered data as independent underestimates the sampling vari-

ance, which in turn produces underestimated standard errors. In other words, given 

that people in the sample are non-independent (or somewhat redundant with each 

other), the neff is smaller than the actual sample size for the study. The neff for a given 

sample is a function of the degree of non-independence in the sample and the num-

ber of people per cluster. The degree to which the effective sample size and the actual 

sample size differ determines the degree to which the standard errors from traditional 

statistical tests are underestimated. To estimate how much the clustered nature of the 

data impacts the standard errors, we must account for both the homogeneity within 

clusters (ICC) and the average cluster size (nj).

So, what is the effective sample size for Igor’s sample? It is certainly less than 1000. 

One might be tempted to aggregate the data up to the household level and then 

use the mean sleep score of each household as the outcome variable, resulting in a 

sample size of 250. However, such an approach is overly conservative. There is still 

considerable variability in sleep hours within each household. By aggregating to the 

household level, we would lose all of the information about within-household vari-

ability in sleep time. So, aggregating to the cluster level both undersells the amount 

of information in the sample data and discards substantively interesting information 

about how different people within the same cluster differ from each other.

So, Igor faces a difficult question: is his sample more like a sample of 250 people, 

a sample of 1000 people or something in between? The neff provides the answer. Let’s 

first consider two extremes. When the ICC is .00, then the neff is equal to the total 

number of observations. When the ICC is 1.00, observations within a cluster are 

complete replicates of each other, so sampling more than one unit per cluster is com-

pletely unnecessary. Thinking back to our sleep example, an ICC of 1.00 indicates 

that people within the same household receive identical amounts of sleep. Therefore, 

sampling more than one person per household would provide no additional infor-

mation. In such an unlikely situation (at least for those of us who study humans!), 

the effective sample size would equal the number of clusters. When the ICC is larger 

than .00 but smaller than 1.00, the effective sample size is somewhere between the 

total number of people in the sample (as it is when the ICC = .00) and the number of 

clusters (as it is when the ICC = 1.00).

Computing the effective sample size n^eff

Computing the effective sample size requires both the ICC (ρ) and the average num-

ber of observations per cluster (nj). Using the effective sample size, we can adjust our 

standard errors to account for the non-independence.
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INTRODUCTION TO MODERN MODELLING METHODS10

Using the ICC and the average number of observations per cluster, first we compute 

the design effect (DEFF; Kish, 1965). The design effect is a ratio of the sampling 

variability for the study design compared to the sampling variability expected 

under a simple random sample (SRS). We calculate the DEFF using the following 

equation:

DEFF � � � �
var( )
var( )

( )
design
SRS

nj1 1�  (1.2)

where nj is the average sample size within each cluster and ρ is the ICC. If this ratio 

equals 1.00 (which only happens when the ICC = .00), then the clustering has no 

effect. However, DEFF greater than 1.00 indicates some degree of dependence of 

observations within clusters; this increases the actual Type I error rate above the 

nominal Type I error rate (α). Using the design effect, we can calculate the neff, or the 

sample size that we should use to more appropriately compute the standard errors for 

our study. The formula for neff is simply (Snijders & Bosker, 2012):

n
N N

neff
j

� �
� �DEFF 1 1�( )

 (1.3)

where nj is the average cluster size and ρ is the ICC and N is the total sample size.

Now, let’s calculate the DEFF and the neff for Igor’s study, assuming that the ICC = .40. 

The DEFF for Igor’s study is 1 + .4(4 − 1) = 2.2. This means that the neff for Igor’s study 

is 1000/2.2, or 454.55, which is about half as large as the actual sample size. So, how 

do we fix Igor’s error? We have two options: (1) we could use MLM techniques 

or (2) we could adjust the standard errors from a traditional statistical analysis to 

account for the non-independence in our data. To compute the corrected standard 

errors, we simply substitute the neff for n. To illustrate, let’s correct the standard error 

of the mean for the degree of clustering in our sample. The standard error of the 

mean is the square root of the variance (σ2) divided by the sample size, σ 2 n , which 

equals the standard deviation divided by the square root of the sample size, σ n . 

In Igor’s sample, the standard deviation in the number of sleep hours per night is 

2.00. Therefore, the standard error using simple random sampling is = 2/ 1000 = 0.063. 

However, the effective sample size of Igor’s sample is 454.22, which is much smaller 

than it would have been if he had sampled 1000 people from 1000 different house-

holds. We replace n with neff in the denominator of the standard error formula to 

correct the standard error of the mean. Replacing n with neff, 2/ 454 22.  results in a 

standard error of 0.094. Thus, the corrected standard error is almost 50% larger 

than it would have been if we incorrectly assumed our sample of 1000 people were 

completely independent.
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Clustering and dependenCe: Our entry intO multilevel mOdelling 11

Alternatively, we can also adjust previously computed standard errors using the square 

root of the DEFF, called the root design effect (DEFT; Thomas & Heck, 2001). The DEFT 

indicates the degree to which the standard errors need to increase to account for the clus-

tering (non-independence). Recall that the DEFF for our study was 2.2. The square root 

of 2.2 is 1.48 (DEFT). Multiplying 1.48 by the original standard error, 0.063, provides the 

corrected standard error, 0.094, which matches the standard error computed using neff.

To summarise, two factors influence the design effect: (1) the average cluster size 

(i.e. the average number of individuals per cluster) and (2) the ICC. Holding average 

cluster size constant, as the ICC increases, the design effect increases. Similarly, hold-

ing ICC constant, as the average cluster size increases, the design effect increases. 

The effective sample size is the actual sample size divided by the DEFF. In our sleep 

example, if the average cluster size were 10 (instead of 4) with an ICC of .40, the DEFF 

would be 4.6, resulting in a DEFT of 2.14 and an effective sample size 217.4. In this 

scenario, our corrected standard error estimate would be 0.063 * 2.14= 0.135, mean-

ing the corrected standard error is over twice as large as the original standard error.

Figure 1.1 illustrates the effect of increasing average cluster size on the effective 

sample size. The actual sample size is 1000. This graph presents curves for two common 

ICC values for school-based research: .15 and .30. The y-axis depicts the drop in effective 

sample size as the average cluster size increases. Holding cluster size constant, neff is lower 

when the ICC is higher: neff is consistently lower when ICC = .30.
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Figure 1.1 Effective sample size for a sample of 1000 as a function of intra-class 
correlation coefficient and average cluster size

McCoach, D. Betsy, and Dakota Cintron. Introduction to Modern Modelling Methods, SAGE Publications, Limited, 2022. ProQuest Ebook Central,
         http://ebookcentral.proquest.com/lib/purdue/detail.action?docID=6897209.
Created from purdue on 2023-01-09 14:40:18.

C
op

yr
ig

ht
 ©

 2
02

2.
 S

A
G

E
 P

ub
lic

at
io

ns
, L

im
ite

d.
 A

ll 
rig

ht
s 

re
se

rv
ed

.



INTRODUCTION TO MODERN MODELLING METHODS12

Some researchers mistakenly believe that they can safely ignore small ICCs. 

However, small ICCs, coupled with large average cluster sizes, can still result in 

severely underestimated standard errors. Figure 1.2 illustrates the dangers of ignor-

ing small ICCs when the average cluster size is large. The neff is a function of ICC 

and average cluster size for three very small ICC values: .01, .02 and .05, again assuming 

an original sample size of 1000. For example, with an ICC of .05 and an average of 

50 units per cluster, the DEFF is 3.45, so the DEFT is 1.86 ( 3 45 1 86. .= ) and neff is 

289.86. With an ICC of .01 and 50 people per cluster, neff is 671.14. With an ICC 

of .01 and a cluster size of 250 people, neff is 286.53. In general, if either the ICC 

or the average cluster size is large, then design effect is non-ignorable. These cor-

rections, which enlarge the standard error and increase the p-value, have a major 

impact on tests of statistical significance. Luckily, when we use MLM, it is not 

necessary to correct standard errors. MLM produces standard errors that account 

for the dependency induced by clustering.

0

100

200

300

400

500

600

700

800

900

1000

10 30 50 70 90 11
0

13
0

15
0

17
0

19
0

21
0

23
0

25
0

27
0

29
0

31
0

33
0

35
0

39
0

41
0

43
0

45
0

47
0

49
0

51
0

53
0

55
0

E
ff

ec
ti

ve
 S

am
p

le
 S

iz
e

Average Cluster Size

Effective Sample Size for an original sample of 1000 as a function
of ICC and average cluster size

ICC=.01 ICC=.02 ICC=.05
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seemingly-small intra-class correlation coefficient can have a large effect on standard errors 
and tests of statistical significance if the average cluster size is very large
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Clustering and dependenCe: Our entry intO multilevel mOdelling 13

Chapter summary

• Observations within a given cluster often exhibit some degree of dependence (or 
interdependency). In such a scenario, violating the assumption of independence 
produces incorrect standard errors that are smaller than they should be. Therefore, 
inferential statistical tests that violate the assumption of independence have inflated 
Type I error rates: they produce statistically significant effects more often than they 
should.

• Multilevel modelling (MLM) allows researchers to model the relatedness of observations 
within clusters explicitly. The standard errors from multilevel analyses account for the 
clustered nature of the data, resulting in more accurate Type I error rates.

• Multilevel analyses can partition the variance in the outcome variable into between-
cluster variance and within-cluster variance.

• Predictors at both the individual level (level 1) and the group level (level 2) may explain 
this between-cluster variability in the outcome variable. Level-1 predictors may explain 
within-cluster variability in the outcome variable.

• The intra-class correlation coefficient (ICC) measures the proportion of the total 
variability in the outcome variable that is explained by cluster membership. The ICC is 
also the expected correlation between two randomly drawn individuals from the same 
cluster (Hox et al., 2017).

• The effective sample size (neff) for a given sample is a function of the degree of non-
independence in the sample and the number of people per cluster. The degree to 
which the effective sample size and the actual sample size differ indicates the degree 
to which the standard errors from traditional statistical tests are underestimated.

Further reading

McCoach, D. B., & Adelson, J. L. (2010). Dealing with dependence: Part I. 

Understanding the effects of clustered data. Gifted Child Quarterly, 54(2), 152–155.

This article is a good supplement to the material covered in this chapter. It provides 

a conceptual introduction to the issue of clustering and dependence as well as an 

illustration of the effect of non-independence on the standard error.

Kreft, I. G., & de Leeuw, J. (1998). Introducing multilevel modeling. Sage.

This book provides a non-technical, accessible and practical introduction to 

multilevel modelling. The book also provides a broad overview of multilevel 

modelling, applications of multilevel modelling and its historical development.
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INTRODUCTION TO MODERN MODELLING METHODS16

Having discussed the importance of taking the nested nature of data into account 

when conducting statistical analyses, we now introduce the multilevel model. This 

chapter provides a conceptual introduction to multilevel modelling (MLM). Chapter 3 

provides additional guidance on building models in MLM and presents an applied 

example using real data.

Review of single-level regression

A multilevel regression model is still a regression model, so let’s briefly review the standard 

regression equation before extending to the multilevel case. Typically, we represent 

a regression model with one predictor as Yi = β0 + β1(Xi) + ri, where Yi = person i’s 

score on the outcome variable, Y. The intercept, β0, represents the expected value of Y 

when X (the independent variable) is equal to 0. Generally, the intercept receives relatively 

little attention in multiple regression. However, in multilevel models, the intercept is 

often the star of the show! (We will have much more to say about this later.) The error 

term or residual, ri, represents individual i’s actual score on the outcome variable (Y) 

minus their model-predicted score on the outcome variable (Ŷ ), which is β0 + β1 (Xi). A 

positive residual indicates that the person’s actual score is higher than their predicted 

score, whereas a negative residual indicates that a person’s actual score is lower than 

their predicted score. In multiple regression, we assume that these errors are normally 

distributed with a mean of 0 and a constant variance σ2.

Regression model with no predictors

Let’s begin with the simplest possible regression model: a standard regression model 

with no predictors: Yi = β0 + ri. In this case, the intercept β0 represents the expected 

value on the outcome Y; absent any other information, β0 is the mean of Y. The 

error term ri denotes the difference between person i’s actual score (Yi) and his/

her predicted score on Y; in this model, the person’s predicted score is simply β0, 

the mean of Y. Furthermore, with standard regression approaches, we make the 

assumption of independence, which means that we assume the ri ’s are uncorrelated 

with each other.

Multilevel model with no predictors

Recall from Chapter 1, in a clustered sample (like Igor’s), people within a given clus-

ter are more similar to each other than to individuals from other clusters. Therefore, in 

clustered samples, we expect the ri ’s to be correlated within clusters, but independent 
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multilevel mOdelling 17

across clusters. So, how does a multilevel model with no predictors differ from a multiple 

regression model with no predictors? Given that the residuals for observations within 

clusters co-vary, some of the variance in the dependent variable can be explained by 

cluster membership. Therefore, we introduce an additional error term, u0j, to capture the 

portion of the residual that is explained by membership in cluster j. The residual for 

the intercept for each cluster (u0j) represents the deviation of a cluster’s intercept from the 

overall intercept. The term u0j allows us to model the dependence of observations from 

the same cluster because u0j is the same for every person within cluster j (Raudenbush & 

Bryk, 2002).

Returning to our sleep example, some of the variability in sleep time is between 

households, meaning that households differ in terms of their expected/mean sleep 

time. Households do vary in terms of their average sleep time, so we allow the inter-

cept β0, which is the mean of the outcome variable (sleep time) to vary across clusters. 

Conceptually, allowing the intercept to randomly vary across clusters is analogous to 

allowing separate intercepts for each cluster. Therefore, our level-1 equation is now 

Yij = β0j + rij, where j indexes the cluster and i indexes the person. Instead of having 

only one intercept (as we did in the multiple regression equation), we now have 

j intercepts, one for each cluster. This means that person i in cluster j’s score on the 

outcome variable Y equals the expected cluster mean for cluster j, β0j, plus person 

i’s deviation from this expected cluster mean, rij. So in Igor’s sample, each household 

has its own intercept, β0j, which is the predicted household (cluster) mean. Given that 

there are 250 clusters (households), there are also 250 β0j ’s or intercepts.

For simplicity, let’s assume we have no predictors at level 2. The level-2 equation 

is then β0j = γ00 + u0j. In MLM, we refer to these β0j ’s as randomly varying intercepts. 

The randomly varying intercept, which was on the right-hand side of the level-1 equation 

(acting as a predictor of Y) is now on the left-hand side of the level-2 equation 

(acting as an outcome variable). The 250 intercepts (β0j ’s) are predicted by an overall 

intercept, γ00, and a level-2 residual (error), u0j, which captures the deviation of cluster 

j’s predicted intercept, β0j, from the overall intercept, γ00. Each of the j clusters has 

its own level-2 residual, u0j, which allows each cluster to have its own intercept (β0j). 

Rearranging the level-2 equation so that u0j = β0j − γ00, it becomes clear that the level-2 

residual, u0j, is the difference between β0j (the expected cluster mean for the outcome 

variable) and γ00 (the overall expected value on the outcome variable). Thus, our set 

of multilevel equations for a completely unconditional model is

Y r

u
ij j ij

j j

� �

� �

�

� �
0

0 00 0 
 

(2.1)

The subscript for γ00 contains no i’s or j’s, meaning that γ00 is fixed: there is only one 

value of γ00, the overall intercept. Because we have no predictors, γ00 is also the predicted 
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INTRODUCTION TO MODERN MODELLING METHODS18

mean (average) on the outcome variable, Y. Notice that β0j occurs in both equations. 

Therefore, we can substitute γ00 + u0j for β0j to obtain one combined (or mixed) equation,

Yij = γ00 + u0j + rij (2.2)

What does this mean? Person i in cluster j’s score on Y (Yij) is equal to the overall 

expected/mean Y score (γ00) plus the amount by which his/her cluster (cluster j) deviates 

from that overall mean Y score (u0j) plus the amount by which he/she (person i in 

cluster j) deviates from his/her cluster mean (rij). So each person’s score (Yij) equals the 

expected (predicted) mean (γ00) plus their cluster’s deviation from the overall mean 

(u0j) plus their deviation from their own cluster’s mean (rij).

Box 2.1

A note on multilevel versus combined equations

Conceptually, separating the equations from a multilevel model into multiple levels 
is often more intuitive than the combined equation. In reality, the multilevel model 
that is estimated is the combined model, and different statistical software packages 
require users to convey models in different formats. For example, users of SAS, Stata, 
R and SPSS must specify the combined model, whereas users of the software packages 
HLM, Mplus and MLWin can use the multiple-equation notation to estimate multilevel 
models. Thus, some prefer to use the combined notation, while others prefer the mul-
tiple-equation notation. Either convention is acceptable, as both sets of equations are 
equivalent and contain the same information. In this book, we tend to favour the multi-
level equations, but we sometimes present the combined form as well.

For a more concrete example, let’s return to Igor’s sample. Imagine that, on aver-

age, people report sleeping 8 hours per night (γ00 = 8). Suzie lives in a house where the 

average number of sleep hours per night is 6 (β0j = 6), but Suzie herself sleeps 7 hours 

per night (Yij = 7). Conceptually, Yij = γ00 + u0j + eij for Suzie would be 7 = 8 + (−2) + 1. In a non-

multilevel framework (with a non-clustered, simple random sample), the prediction 

equation for Suzie would simply be Yi = β0 + ei, or 7 = 8 + (−1). The single-level regres-

sion equation contains only one error term, Suzie’s deviation from the overall average 

(or predicted) score. The multilevel regression equation contains two residuals: (1) the 

deviation of Suzie’s household from the overall mean (which in this case is −2) and 

(2) Suzie’s deviation from her household mean (which in this case is +1). So, the overall 

mean (the overall intercept or predicted score) is the same in the multilevel and single-level 

frameworks above. What differs is our treatment of the residual(s).
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multilevel mOdelling 19

Random effects and variance components

Without predictors, each person’s score on the dependent variable is composed of 

three elements: (1) the expected mean (γ00), (2) the deviation of the cluster mean 

from the overall mean (u0j) and (3) the deviation of the person’s score from his/her 

cluster mean (rij). In this equation, γ00 is a fixed effect: γ00 is the same for everyone. 

The u0j term is called a random effect for the intercept because u0j randomly varies 

across the level-2 units (clusters). In MLM, fixed effects are parameters that are fixed 

to the same value across all clusters (or individuals), whereas random effects differ 

(vary) across clusters (or individuals) (West et al., 2015).

Residual variances in MLM

Multilevel models and standard regression models do not differ in terms of their fixed 

effects. However, they differ in terms of the complexity of their residual variance/

covariance structures. This more complex residual variance/covariance structure is at 

the heart of MLM. Therefore, understanding the meaning and utility of the included 

random effects is essential.

To account for the dependence/clustering, we break the residual into two pieces, 

u0j and eij: u0j captures the deviation of the cluster mean (intercept) from the overall 

mean (intercept), and rij captures the deviation of the individual’s score from the 

mean for that individual’s cluster. We can then compute variances for each of these 

residuals. (You may have noticed that we spend a lot more time thinking about inter-

cepts and residuals in MLM than we ever did in ordinary least squares [OLS] regres-

sion!) The variance of rij, σ
2, represents the within-cluster residual variance in the 

outcome variable, and the variance of u0j, τ00, represents the between-cluster residual 

variance in the outcome.

We also make several important assumptions related to our model’s residual vari-

ance terms: (a) the set of u’s is normally distributed with a mean of 0 and a variance of 

τ00, (b) the set of r’s is normally distributed with a mean of 0 and a variance of σ2 and 

(c) the within-cluster residuals (rij’s) and between-cluster residuals (uj’s) are uncorre-

lated. This last assumption allows us to cleanly partition the variance in the outcome 

variable into within- and between-cluster variance components. Therefore, in the 

simplest unconditional model with no predictors, the total variance in the outcome 

variable (var(Yij)) equals the sum of the between-cluster variance, τ00, and the within-

cluster variance, σ2. The ability to partition variance into within-cluster variance and 

between-cluster variance is one of MLM’s greatest assets.
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INTRODUCTION TO MODERN MODELLING METHODS20

intercepts as outcomes models

Because the intercepts vary across clusters, we can build a regression equation at 

level 2 to try to explain the variation in these randomly varying intercepts. For 

instance, in our sleep example, we could include household-level covariates to 

predict between-cluster variance in households’ sleep time. For example, the 

number of dogs in the house or the average age in the household are potential 

level-2 covariates. Raudenbush and Bryk (2002) refer to these models as means as 

outcomes models because the level-2 model predicts differences in the intercepts 

across clusters (level-2 units).

The level-2 covariates may help to explain why some households sleep more than 

others. However, level-2 variables can never explain within-cluster variance (i.e. 

household-level variables cannot explain why certain members of the family sleep 

more or less than other family members). To explain within-cluster (level-1) variance, 

we need to include within-cluster (level-1) covariates.

Adding level-1 predictors

Now, let’s consider a model in which there is one predictor at the lowest level 

(level 1). Imagine that we want to predict sleep hours using age. (The age–sleep 

relationship might actually be non-linear: people in middle adulthood might sleep 

less than children and older adults. However, for simplicity, let’s assume a linear 

relationship between age and sleep time.) We regress sleep hours (Yij) on age (Xij). 

Now our level-1 model is as follows:

Yij = β0j + β1j (Xij) + rij (2.3)

Remember that in standard linear regression, the intercept is the predicted value on 

Y when all predictors are held constant at 0. Similarly, we interpret the intercept (β0j) 

as the predicted mean sleep hours in cluster j when Xij (age) is equal to 0. Because age 

is equal to 0 at birth, the intercept is the expected amount of sleep time for a new-

born infant. The slope β1j (the effect of age on sleep time) can vary by cluster, just like 

β0j does. If we allow β1j to randomly vary by cluster, β1j becomes an outcome variable 

in a level-2 equation and has its own residual term, u1j. Equation (2.4) contains the 

multilevel model with a randomly varying intercept and a randomly varying slope.

Y X r

u

u

ij j j ij ij

j j

j j

� � �� �
� �

� �

� �

�

�

�

�

0 1

0 0

1 1

00

10

 

(2.4)
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multilevel mOdelling 21

In Equation (2.4), γ00 represents expected (predicted) number of sleep hours when 

age = 0, and γ10 represents the average effect of age on sleep time across the entire 

sample. So, if age is measured in years, we expect a γ10-hour change in sleep for every 

additional year. The error term, u1j, represents the difference between the average 

slope and cluster j’s slope. In our example, u1j is the difference between cluster j’s 

age–sleep slope and the overall age–sleep slope. If the ‘effect’ of age on sleep time 

does not vary across clusters, then all clusters should have the same (or very similar) 

age–sleep slopes. In such a scenario, the value of u1j for each cluster would be 0 (or 

near zero), and the variance of u1j would also be approximately 0. If the slope is the 

same across all clusters (i.e. the slope does not vary across clusters), it is not necessary 

to estimate a randomly varying slope. Instead, we could estimate a model in which 

the intercept for sleep time randomly varies across clusters, but the age–sleep slope 

(the effect of age on sleep) remains constant across clusters. In that scenario, our 

multilevel model equations would be

Y r

u

Xij j j ij

j j

j

ij� �

� �

�

�� �

� �

� �

0 1

0 00 0

1 10

( )

 
 

(2.5)

Again, using substitution to combine these level-specific equations into one mixed-format 

model produces the combined model for each set of multilevel equations above. If 

the age–sleep slope does not randomly vary across clusters, the combined model is 

simple. Substituting γ00 + u0j for β0j and γ10 for β1j, the mixed-format equation is

Yij = γ00 +γ10 (Xij) + u0j + rij (2.6)

such that person ij’s score on Y is a function of γ00, the overall intercept (the predicted 

score when Xij = 0, which in this case is when age = 0), γ10 (the slope of age on sleep 

hours) multiplied by person ij’s age (Xij), the deviation of his/her household’s intercept 

(the predicted number of sleep hours at age = 0) from the overall intercept (u0j), and 

rij, the deviation of person ij’s score from his/her model-predicted score.

If the age–sleep slope does randomly vary by cluster, then substituting γ10 + u1j for 

β1j results in the following combined equation:

Yij = γ00 +γ10 (Xij) + u0j + u1j (Xij) + rij (2.7)

Now person ij’s score is a function of γ00, the overall intercept (the predicted score 

when Xij = 0), γ10, the slope of age on sleep hours, multiplied by person ij’s age (Xij), 

the deviation of his/her household’s intercept from the overall intercept (u0j), the 

deviation of his/her household’s slope from the overall slope (u1j) multiplied by person 

ij’s age (Xij) and the deviation of person ij’s score from their model-predicted score, rij.
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INTRODUCTION TO MODERN MODELLING METHODS22

Allowing the age–sleep slope to randomly vary across households by including a 

random effect for the slope (u1j) specifies a model in which the age–sleep slope is dif-

ferent for different households. Therefore, in some households, there could be no 

relationship between age and sleep time, resulting in an age–sleep slope of 0; in other 

households, the sleep slope could be negative, indicating that older members of the 

household tend to sleep less than younger members of the household. Finally, the 

age–sleep slope could be positive, indicating that older members of the household 

tend to sleep more than younger members of the household. The fixed effect, γ10, 

indicates the expected (average) value of the age–sleep slope across the entire sample. 

The variance in the age–sleep slope, var(u1j), indicates how much households vary 

from the overall average. If the variance of u1j is large, there is a lot of between-

household variability in the age–sleep slope. In contrast, if the variance of u1j is 0, 

then there is no variability across households in terms of their age–sleep slopes: in 

this case, we would want to fix u1j to 0, as that would greatly simplify our model.

Figure 2.1 illustrates the concept of randomly varying intercepts and randomly 

varying slopes by graphing the relationship between a hypothetical independent 

variable (X), such as age, and a hypothetical dependent variable (Y), such as hours of 
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Figure 2.1 (1) Randomly varying intercepts, (2) randomly varying slopes and (3) randomly 
varying intercepts and slopes

Note. ETW = expressive target word assessment; PPVT = Peabody Picture Vocabulary Test.
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sleep, under three conditions: (1) when the intercept randomly varies but the slope is 

fixed, (2) when the slope randomly varies but the intercept is fixed and (3) when both 

the slope and the intercept randomly vary. (Note each line in Figure 2.1 represents 

the regression line for a specific cluster.) When only the intercepts randomly vary, all 

clusters have equal slopes, but they differ in their intercepts, producing parallel regression 

lines. Likewise, when only the slopes randomly vary, all clusters have equal intercepts, 

but they differ in their slopes. Therefore, all regression lines appear to originate in 

the same location (at X = 0) but then diverge. Lastly, when the slopes and intercepts 

randomly vary, each cluster has its own unique intercept and slope.

Full contextual (slopes-as-outcomes) model

The full contextual/theoretical model contains both level-1 and level-2 

predictors. Level-2 predictors may help to explain between-cluster differences in the 

intercept (the expected value of the outcome variable when all level-1 variables are 

held constant at 0). Level-2 predictors may also help explain between-cluster differ-

ences in level-1 slopes. In other words, the level-2 variable helps to predict how the 

relationship between the level-1 predictor and the outcome variable differs across 

clusters. Returning to our example, age is a level-1 predictor of sleep hours. We could 

include a household-level variable, such as the average noise level in the home, to 

predict the average number of sleep hours within the household (the intercept). A 

level-2 variable (i.e. the noise level in the house) could also predict a level-1 slope 

(i.e. the age–sleep hours slope). We refer to a level-2 predictor of a level-1 slope as 

a cross-level interaction because it represents an interaction between a level-2 

variable and a level-1 variable. In this example, the cross-level interaction indicates 

whether the noise level in the house moderates the relationship between age and 

sleep hours.

variance–covariance components

The γ terms are the fixed effects and the u terms are the random effects. All of the γ terms 

could be estimated using multiple regression models with interaction terms. However, 

the u terms, the random effects, are unique to mixed/multilevel models. Multilevel 

techniques allow us to model, estimate and test the variances (and covariances) of 

these random effects (also known as variance components and denoted by the symbol, τqq). 

Specifically, τ00 represents the variance of the randomly varying intercepts (u0j), τ11 sig-

nifies the variance of the first randomly varying slope (u1j) and so on. In addition, we 

generally allow the random effects (within a given level) to co-vary with each other. 
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Therefore, in our simple example above, τ01 represents the covariance between residu-

als for the randomly-varying intercept and the randomly varying slope.

var
u

u
j

j
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�

�
�
�

� �

� �
 (2.8)

If we standardise τ01, it represents the correlation between the residuals of the intercept 

and slope. If τ01 is positive, then clusters with more positive intercepts also tend to 

have more positive/less negative slopes. If τ01 is negative, then clusters with more positive 

intercepts tend to have less positive/more negative slopes. Although we do allow 

random effects to co-vary within a given level, we assume that the residuals are uncor-

related across the levels of our analysis. As a result, although τ00 and τ11 are allowed to 

co-vary, we assume that both τ00 and τ11 are uncorrelated with σ2.

Advice on modelling randomly varying slopes

Depending on the researcher’s theoretical framework and the sample size at level 1, 

the slopes for some of the level-1 predictors may be estimated as randomly varying 

across level-2 units, or they can be estimated as fixed across all level-2 units. A ran-

dom-coefficients model is a model in which one or more level-1 slopes randomly vary 

(Raudenbush & Bryk, 2002). Although our simple example contains only one level-1 

variable (age), often multilevel models contain several level-1 variables. For example, 

many multilevel educational studies in which students are nested within schools 

include a variety of level-1 control variables, such as gender, race/ethnicity (which is 

often a set of four to six dummy-coded variables), free lunch status, English learner 

status and special education status. A set of control variables could easily include 

10 or more level-1 variables. In such a situation, the researcher must decide which 

level-1 slopes to allow to randomly vary across schools and which level-1 slopes to 

fix to a single value across all schools. Why not allow all 10 level-1 covariates to ran-

domly vary across schools? First, remember the structure of the residual covariance 

matrix. The unstructured tau (τ) matrix contains a variance for the randomly varying 

intercept and every randomly varying slope as well as all possible covariances among 

the slopes and intercepts. Therefore, the number of unique variance–covariance com-

ponents in the tau matrix is equal to r(r + 1)/2, where r equals the number of random 

effects. As we saw earlier, with a random intercept and a random slope, the Tau 

matrix contains (2 * 3)/2 = 3 parameters (two variances and a covariance). However, 

in a model that contains five randomly varying slopes and a randomly varying inter-

cept, the tau matrix contains (6 * 7)/2 = 21 unique parameters, and the tau matrix for 

a model with 10 randomly varying slopes and a randomly varying intercept contains 
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(11 * 12)/2 = 66 unique parameters. In other words, in a model with 10 randomly var-

ying slopes, we need to estimate a total of 67 different residual parameters: σ2 and an 

11 * 11 tau matrix, containing 66 unique level-2 variance components. Partitioning 

the residual variance in a model into 67 separate pieces feels like a Sisyphean task. 

(Remember, in multiple regression, we estimate just one residual variance parameter.)

Raudenbush and Bryk (2002) cautioned against succumbing to the ‘natural tempta-

tion to estimate a “saturated” level-1 model’ in which all level-1 predictors are speci-

fied to have randomly varying slopes (p. 256). We cannot overstate the importance 

of this advice. It is essential to be parsimonious when specifying randomly varying 

slopes for several reasons:

1 First, as demonstrated above, adding random slopes radically increases the 
complexity of the model.

2 There is an upper limit on the number of random slopes based on the sample 
size at level-1. Minimally, cluster size must be larger than the number of variance 
components for the model to be identified. Therefore, in dyadic data, it is only 
possible to estimate one random effect. Our sleep example had a cluster size of 
four, so the maximum number of potential random effects is three (presumably a 
randomly varying intercept and two randomly varying slopes). This does not mean 
that it is a good idea to estimate such nearly saturated models; we generally prefer 
to fit level-1 models in which the number of random effects is comfortably less than 
the cluster size.

3 It is common to experience convergence problems when trying to estimate 
randomly varying slopes that are unnecessary. Multilevel models that contain a 
random slope that has no between-cluster variance often fail to converge (or require 
thousands of iterations to converge). Because variances cannot be less than 0, trying 
to estimate randomly varying slopes that are actually 0 in the population often leads 
to boundary issues, resulting in models that fail to converge. Unfortunately, such 
results may not provide guidance about which of the random effects to eliminate 
(McCoach et al., 2018).

Of course, it is easy to think of at least one logical reason that each slope in a multi-

level model might randomly vary, and it is tempting to allow most or all of them to 

do so ‘just to see’ what happens. However, we implore you – don’t do it! In our expe-

rience, some people who learn about randomly varying slopes become ‘greedy’ and 

want to be able to allow every slope parameter in large regression models to randomly 

vary across clusters. Attempting to estimate and interpret dozens of residual variance–

covariance components is unrealistic and unreasonable under most circumstances.

We recommend including random slope effect only if the randomly varying slope 

is central to your research question or if you have compelling evidence from prior 

research that the slopes are likely to randomly vary. Use randomly varying slopes 

carefully, sparingly and cautiously: be judicious and parsimonious about which 

random slopes to include in multilevel models. Also, eliminate any unnecessary 
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INTRODUCTION TO MODERN MODELLING METHODS26

random effects for level-1 coefficients that do not vary across level-2 units (McCoach 

et al., 2018).

Centring level-1 predictors

In regression models, we often centre covariates for both substantive and analytic 

reasons. As mentioned earlier, the intercept is the predicted value of the outcome 

variable when all of the predictor variables are held constant at 0. So, in our sleep 

example, the intercept for sleep was the predicted sleep hours at age 0. In single-level 

regression, one common strategy is to centre continuous predictor variables by sub-

tracting the mean of the variable (X) from each person’s score (Xi). This transforms 

person i’s score on X into a deviation score, which indicates how far above or below 

the mean person i scored. Therefore, the mean of a centred variable is 0 and the vari-

ance is the same as the variance of the score in its original metric (because all scores 

change only by a single constant value, the mean). In single-level regression, centring 

continuous covariates is especially important when including interaction terms. The 

choice of centring influences the main effects for the predictor variables included in 

the interaction term: the regression coefficient is the predicted effect of X on Y when 

the other predictor variable in the interaction term equals 0 (Aiken & West, 1991).

In MLM, we may centre continuous predictor variables for substantive and/or ana-

lytic reasons. First, centring continuous covariates allows for a more substantively 

useful and interpretable intercept. Second, the magnitude of the between-person 

(residual) variance in the intercept, τ00, and the correlation between the intercept and 

any randomly varying slopes is dependent on the location of the intercept.

In organisational applications of MLM, the two main centring techniques for lower-

level covariates are grand mean centring and group mean centring. Grand 

mean centring subtracts the overall mean of the variable from all scores. Therefore, 

the grand mean–centred score captures a person’s standing relative to the full sample. 

Group mean centring subtracts the cluster’s mean from each score in the cluster. As 

such, the transformed score captures a person’s standing relative to their own cluster.

As an example, let us grand mean and group mean centre age (Xij) for person i in 

cluster j. In our example, the grand mean represents the mean age across all indi-

viduals i and all clusters j ( X••), and the cluster mean represents the mean age of all 

individuals i in a household j ( X j•
). To grand mean centre age, we subtract the mean 

age in the entire sample from each person ij’s age ( X Xij � �� ), so under grand mean 

centring Xij is person ij’s deviation from the average age in the entire sample ( X•• ). 

To group mean centre age, we subtract the average household age from each person’s 

age ( X Xij j� �
); so, under group mean centring, Xij is person ij’s deviation from his/her 

household’s average age ( X j•
).
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Obviously, the decision about how to centre independent variables has major 

implications for the interpretation of the intercept. Grand mean centring age sets the 

intercept at the overall mean. This holds age constant at the overall mean, thereby 

controlling for age. When grand mean centring age, the randomly varying intercept, 

β0j, denotes the predicted number of sleep hours for household j assuming that this 

household’s average age is the same as the overall average age. The intercept is the 

predicted number of sleep hours in household j, holding age constant at the overall 

mean ( X•• ). Person i in cluster j’s score on the grand mean–centred X variable repre-

sents the deviation of that person’s score from the overall average. In this case, grand 

mean–centred age represents each person’s deviation from the average age across the 

entire sample. Grand mean centring represents a simple linear transformation of the 

original variable.

One problem with grand mean centring arises when no one in a given cluster has 

scores near the overall mean. In such cases, the intercept for that cluster is extrapo-

lated outside the range of data for the cluster. For example, if the average age across 

households is 40, but in household j, the four members are 55, 55, 65 and 65 years 

old, then the grand mean–centred scores are 15, 15, 25 and 25, respectively. No one 

in the household has a centred score near 0. Thus, the intercept in household j is the 

predicted sleep score for a 40-year-old, even though there are no 40-year-olds in that 

household. For a detailed discussion of the statistical and interpretational issues that 

such extrapolation can cause, see Raudenbush and Bryk (2002).

On the other hand, if we group mean centre age, then the randomly varying inter-

cept (β0j) is the mean number of sleep hours in household j. Having subtracted each 

cluster’s own mean ( X j• ) from each score, the mean of the cluster-mean centred 

age variable is 0 in every cluster. Therefore, the randomly varying intercept for each 

cluster is the mean (expected/predicted) number of sleep hours in that household (j). 

Person i in cluster j’s score on the group mean–centred X variable represents the 

deviation of their score from their cluster’s average score. In this case, group mean–

centred age represents each person’s deviation from their household’s average age. 

So, in a household where the ages are 55, 55, 65 and 65 years, the household’s mean 

age is 60 years. To group mean centre, we subtract 60 from each score, producing 

group mean–centred scores of −5, −5, 5 and 5, respectively. The mean of the group 

mean–centred variable is 0 in every cluster, so the overall intercept is the mean of 

cluster means: it is the overall average household sleep time.

important guidance on group mean centring

A group mean–centred score provides information about individuals’ relative stand-

ing as compared to their cluster, but it provides no information about the individual 
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INTRODUCTION TO MODERN MODELLING METHODS28

or the group’s relative standing as compared to the overall sample. So, for example, 

grand mean–centred scores of 15, 15, 25 and 25 indicate that two of the members of 

the household are 15 years older than the sample average and two of the members 

of the household are 25 years older than the sample average. In contrast, the group 

mean–centred scores of −5, −5, 5 and 5 tell us nothing about how the ages in this 

household compare to ages in the other households in the sample.

Group mean centring removes between-cluster variation from the level-1 covariate, 

so the variance of a group mean–centred variable provides an estimate of the pooled 

within-cluster variance (Enders & Tofighi, 2007). Using group mean centring, we can 

partition the variance in the predictor, the outcome and the relationship between 

the predictor and the outcome into within-cluster and between-cluster components.

However, using group mean centring does not preserve information about between-

cluster differences on the X variable. Using a different cluster mean to centre each 

cluster results in a centred X variable that contains information about how much a 

person deviates from his/her group, but it contains no information about how much 

the person deviates from the overall mean on X. Therefore, when using group mean 

centring, be sure to introduce the aggregate of the group mean–centred variable (or a 

higher-level variable that measures the same construct) into the analysis. Without an 

aggregate or contextual variable at level 2, all of the information about between-

cluster variability in the X variable would be lost – a considerable but avoidable draw-

back. In our age example, the grand mean–centred mean age for our cluster, +20, 

provides information indicating that the average age in this cluster is 20 years older 

than the average age in the overall sample. In contrast, the group mean–centred 

age for our cluster (and every other cluster in the sample) is 0. However, adding the 

cluster mean into the model as a level-2 predictor preserves between-cluster compo-

nent of the age variable. Finally, in group mean centring, a different cluster mean 

is subtracted in every cluster. Therefore, group mean centring is not a simple linear 

transformation, and it does not produce results that are statistically equivalent to the 

uncentred and grand mean–centred results.

Within the multilevel literature, some debate exists about whether to use grand 

mean centring or group mean centring. Because centring decisions affect the inter-

pretations of important model parameters involving the intercept, it is important to 

carefully and thoughtfully decide if and how to centre covariates. The decision to 

use grand mean or group mean centring may vary depending on the context of the 

study, the research questions asked and the nature of the variables in question. For 

instance, if the primary research question involves understanding the impact of a 

level-2 variable on the dependent variable and the level-1 variables serve as control 

variables, grand mean centring may be an appropriate choice. On the other hand, 

when level-1 variables are of primary research interest or for research on contextual and 

McCoach, D. Betsy, and Dakota Cintron. Introduction to Modern Modelling Methods, SAGE Publications, Limited, 2022. ProQuest Ebook Central,
         http://ebookcentral.proquest.com/lib/purdue/detail.action?docID=6897209.
Created from purdue on 2023-01-09 14:40:29.

C
op

yr
ig

ht
 ©

 2
02

2.
 S

A
G

E
 P

ub
lic

at
io

ns
, L

im
ite

d.
 A

ll 
rig

ht
s 

re
se

rv
ed

.



multilevel mOdelling 29

compositional effects, group mean centring may be more appropriate. In addition, 

group mean centring aids in the computation of variance explained (R-squared) 

measures, a point we discuss more fully in Chapter 3. To preserve between-cluster 

information from the covariate, we recommend including the aggregates of group 

mean–centred variables at level 2.

What about centring level-2 variables? Grand mean centring is the only available 

option at level 2. As a general rule, it is advisable to grand mean centre all level-2 

continuous variables. When using level-2 variables as part of a cross-level interaction, 

grand mean centring is especially important. However, even for level-2 variables that 

predict only randomly varying intercepts (not randomly varying slopes), grand mean 

centring the level-2 variable usually facilitates interpretation of the intercept. When 

reporting MLM results, it is important to explain centring decisions and procedures 

and to interpret the parameter estimates accordingly. See Enders and Tofighi (2007) 

for an excellent discussion of centring in organisational multilevel models.

estimation

This book does not delve into the computational details required to actually estimate 

multilevel models. However, it is helpful to conceptually understand the analytic 

challenges of multilevel data and the estimation strategies that MLM employs.

MLM does not require balanced data: the number of units per cluster can vary 

across clusters. In fact, there is no minimum or maximum number of units per cluster, 

and multilevel models can easily accommodate data sets that include some clusters 

with very few level-1 units and other clusters with very large numbers of level-1 units. 

MLM employs a variety of estimation strategies to handle unbalanced data.

To keep things simple, we contextualise this discussion in the context of the 

unconditional random effects model: Yij = γ00 + u0j + eij. Let’s start by identifying a 

simple but important issue that arises when estimating parameters from unbalanced 

data: how to determine the expected value of the outcome variable (γ00) from mul-

tiple clusters of multiple sizes. In non-clustered data, the sample mean provides our 

‘best guess’ about the population mean (the expected value). In clustered data, what 

is the expected value of the outcome variable, γ00? Let’s imagine that we have ran-

domly sampled 100 schools, and the sample sizes within the schools vary widely: the 

smallest cluster size is two students and the largest cluster size is 1000 students. How 

should we determine expected achievement?

One option would be to ignore clustering and compute the sample mean. In such a 

scenario, every person is weighted equally; however, the schools with larger numbers 

of sampled students have a much larger influence on the expected mean than the 
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INTRODUCTION TO MODERN MODELLING METHODS30

small schools do. On the other hand, we could compute the mean of school means. 

However, in that case the schools with very few students have an outsized influence 

on the expected mean. (In addition, the school mean that is computed from a school 

with 1000 students is likely to be a much better estimate of the school’s performance 

than a school mean that is computed from only two students, a point to which we 

return when we discuss empirical Bayes estimates.)

In MLM, larger clusters do have a larger influence on the expected mean. However, 

the ICC tempers that influence. Remember, the ICC provides valuable information 

about the proportion of between-school variance in the outcome, which indicates 

the degree of dependence (redundancy) within a cluster. If the ICC is 0, then students 

within a given school are no more similar to each other than students from differ-

ent schools. In such a situation, taking the sample mean ignoring clustering seems 

reasonable. On the other hand, if the ICC is 1.0, all students in a school are complete 

replicates of each other. In such a scenario, the mean of school means might be of 

greater interest, given the deterministic nature of within-school performance. When 

the ICC is 0, the influence of each cluster on γ00 is proportional to its cluster size. 

When the ICC is 1.0, each cluster has an equal influence on γ00, regardless of its size 

(Snijders & Bosker, 2012). In reality, the ICC lies between 0 and 1.0. So γ00 is a com-

promise between a proportional weighted average (as it would be when ICC = 0) and 

a mean of cluster means (as it would be when ICC = 1). The higher the ICC, the more 

γ00 approaches a mean of cluster means; the lower the ICC, the more γ00 approaches a 

proportional weighted average.

Conceptual introduction to maximum likelihood

Both MLM and structural equation modelling (SEM) use maximum likelihood (ML) 

estimation techniques. In ML estimation, we estimate parameters that maximise the 

probability of observing our data. This section provides a very rudimentary, concep-

tual introduction to ML. The probability of observing an event implicitly assumes a 

model. We make statements about the probability of observing some event, based 

on the model parameters. For example, take the case of a coin toss. Everyone knows 

that the probability of tossing a head is .5. Let’s formalise this notion. Our model 

contains one parameter, p, the probability of tossing a head, and that parameter p is 

equal to .5. In probability, we know the value of the parameter, and we try to predict 

future outcomes based on that known parameter. The likelihood, on the other hand, 

turns probability on its head. With likelihood, we already have the data, and we try 

to determine the most likely value for a parameter, given the data. The goal of ML 

estimation is to find the set of parameter values that makes the actual data most likely 

to have been observed. So imagine we know nothing about the probability of tossing 
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heads, but we want to use data empirically to determine the value for that parameter, 

so we flip a coin 100 times. The coin lands on heads 55 times and on tails 45 times. 

Then we can ask – what is the most likely parameter value for p, the probability that 

I will flip a head, given the data that I have collected? The answer in this case would 

be .55 (not .50): the parameter value of p = .55 maximises the probability of observing 

our results. For a much more detailed and nuanced discussion of likelihood estimation, 

see Myung (2003).

Maximum likelihood estimation in MLM

The most common estimation techniques for estimating variance components for 

multilevel models with normal response variables are full information maximum 

likelihood (FIML) and restricted maximum likelihood (REML).

In FIML, the estimates of the variance and covariance components are condi-

tional upon the point estimates of the fixed effects (Raudenbush & Bryk, 2002). FIML 

chooses estimates of the fixed effects, the level-2 variance–covariance components 

(T) and the level-1 residual variance (σ 2) ‘that maximise the joint likelihood of these 

parameters for a fixed value of the sample data, Y’ (Raudenbush & Bryk, 2002, p. 52). 

Thus, the number of parameters in the model includes both the fixed effects and the 

variance–covariance components. In contrast, REML maximises the joint likelihood 

of the level-2 variance–covariance components (T) and the level-1 residual variance 

(σ 2) given the observed sample data, Y. Thus, when estimating the variance compo-

nents, REML takes the uncertainty due to loss of degrees of freedom from estimating 

fixed parameters into account, while FIML does not (Goldstein, 2011; Raudenbush & 

Bryk, 2002; Snijders & Bosker, 2012).

When the number of clusters (level-2 units) is large, REML and FIML results pro-

duce similar estimates of the variance components. However, when there are small 

numbers of clusters, the FIML estimates of the variance components (τqq) are smaller 

than those produced by REML. With few clusters, FIML tends to underestimate vari-

ance components, and the REML results may be more realistic (Raudenbush & Bryk, 

2002). A simple formula, ( ) /J F J− , where J is the number of clusters and F is the 

number of fixed effects in the model, provides a rough approximation of the degree 

of underestimation of the FIML estimates (Raudenbush & Bryk, 2002). For example, 

when estimating a model with three fixed effects using a sample containing observations 

from 20 clusters, we estimate that the level-2 variance components are .85 = ((20 − 3)/20) 

as large in FIML as they are in REML; this means the FIML variance components are 

underestimated by 15%. However, there is an advantage to using FIML: it allows us to 

compare the fit of two different models, as we explain in the section ‘Deviance and 

Model Fit’.
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Reliability and estimation of randomly varying level-1 coefficients

The randomly varying level-1 coefficients (β0j, β1j,…, βqj) are not parameters in the 

model; they are a function of the fixed effects and the cluster-level residuals. Generally, 

standard MLM uses empirical Bayes estimation to generate the ‘best estimates’ 

of βqj (Raudenbush & Bryk, 2002). The computation of empirical Bayes residuals fol-

lows a different logic and process than the computation of OLS residuals. Below, we 

present a very simple, conceptual introduction to empirical Bayes estimation of the 

randomly varying level-1 intercept for an unconditional random effects model. For 

a more detailed description, we recommend Goldstein (2011) and Raudenbush and 

Bryk (2002).

For simplicity, consider the estimation of the randomly varying intercept, β0j, the 

‘true cluster mean’ under the simplest model, the random effects ANOVA model, 

β0j = γ00 + u0j. We do not know the true cluster mean for cluster j; cluster j has sample 

size nj. MLM allows for unbalanced data: the within-cluster sample sizes (nj) can vary 

greatly across clusters. Some clusters could have many observations (i.e. – nj is large); 

other clusters could have small nj.

How could we estimate the true mean for cluster j? The sample mean, Yj. , provides 

an estimate of the true mean. However, the smaller the cluster size (nj), the less confi-

dence we should have in using Yj.
 (the cluster’s observed mean) as an estimate of 

the cluster’s true mean. In the most extreme situation, imagine we had no observa-

tions from cluster j with which to estimate the true cluster mean. With a sample size 

of 0, what is our best guess about the true mean of cluster j? It is the overall mean, 

γ00. Why? We know nothing about this cluster, but we have information about lots 

of other clusters. Our best guess for the mean of this cluster is the overall mean 

(expected value). So, there are two potential competing estimates for the true mean 

for a cluster: the overall mean (expected value) across the entire sample, which allows 

us to ‘borrow’ information from other clusters to estimate the true mean of cluster 

j, and the observed sample mean of cluster j, which contains some degree of error 

or imprecision. As the sample size in cluster j increases, the precision with which 

we can estimate the true mean from the sample mean increases; there is less error 

in our measurement of the true cluster mean based on the sample mean. Of course, 

another factor influences our ability to estimate the true school mean from the sam-

ple mean: the ICC. Again, imagine an extreme example: if the ICC were 1.0, every 

observation within a cluster is a replicate of every other observation. When there is 

very little or no within-cluster variance, Yj.  is an especially good estimate of the true 

mean of cluster j. When there is a great deal of within-cluster variance, Yj.  is a poor 

estimate of the true cluster mean (especially with small sample sizes; Raudenbush & 

Bryk, 2002).
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Reliability of Cluster j

Our two potential estimates of the true cluster mean are γ00 and Yj. . Empirical Bayes 

estimation combines these estimates of the true cluster mean, based on the reliability 

of cluster j. The reliability of cluster j incorporates three pieces of information: the 

within-cluster variability (σ2), the between-cluster variability (τ00) and the number of 

observations per cluster, nj (Raudenbush & Bryk, 2002):

Reliability of �̂
�

� �0

00

00

2j

j

=
+ n

 (2.9)

When the reliability in cluster j is higher, more weight is placed on the sample mean 

as the estimate of the true school mean. When the reliability of cluster j is lower, more 

weight is placed on γ00 as an estimate of the true school mean. Holding between- and 

within-school variance constant, larger cluster sizes (nj’s) result in higher reliability. 

Each cluster has its own estimate of reliability; however, variance estimates τ00 and σ 2 

remain constant across clusters. Therefore, larger clusters have larger reliability esti-

mates. Nevertheless, larger between-cluster variance (relative to within-cluster variance) 

also increases reliability. In other words, reliability is higher when the group means 

vary substantially across level-2 units (holding constant the sample size per group). 

So, increasing group size, increasing homogeneity within clusters and increasing 

heterogeneity between clusters all increase reliability. The formula for the ICC, 

τ00 / (τ00 + σ 2), features prominently in the reliability formula above. With a bit of 

algebra, we can re-express the reliability formula in terms of ICCs (Raudenbush & 

Bryk, 2002). Larger ICCs, which indicate that within-cluster group variance is small 

relative to between-cluster variance, result in higher reliability. Although reliability 

can range from 0 to 1, the lower bound for the reliability in any given sample is the 

ICC, and that occurs when nj = 1.

Empirical Bayes estimates of randomly varying parameters

Imagine we need to estimate the true political attitudes for a set of counties, and we 

have an incomplete set of information. In most counties, pollsters randomly sampled 

1000 or more respondents. However, in one county, pollsters randomly sampled only 

two respondents. In the counties where the pollsters sampled 1000 respondents, the 

best guess about the true political attitudes would be near the sample mean for the 

1000 respondents. In the county where the pollsters sampled only two of the respond-

ents, we can compute the sample mean. But how confident would we be that the mean 

of the two respondents accurately reflects the true political attitudes in that county?  
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INTRODUCTION TO MODERN MODELLING METHODS34

If one of the two people in the sample is extreme, our sample mean could actually 

be a very poor estimate of the true political attitudes in the county. Imagine an even 

more extreme example: what if the pollsters missed one county entirely? What would 

be our best estimate of the political attitudes in that county? There are two logical 

possibilities for estimating the true county political attitudes. One is the sample mean 

in the county, and this seems like a good estimate of the true mean in counties where 

we have many observations (more information). However, in the counties without 

much information, what is our best guess about the county’s political attitudes? We 

could use the overall mean across all of the counties as an estimate of the county’s 

political attitudes. If we know nothing else about the county and we have no infor-

mation from the county, using the overall mean provides our best estimate. What do 

we do for the county with only two respondents? The small sample of respondents 

does give us some information about the political attitudes in the county, but we 

cannot completely trust that the sample mean of those two respondents provides a 

good estimate of the true county mean. In such a situation, we could use a combina-

tion of the overall mean and the sample county mean to derive an estimate of the 

true mean for the county. To do so, we would want to give more weight to the cluster 

(county) mean when we have more information, and we would want to place more 

weight on the overall mean (expected value) when we have less information from the 

cluster (county). Conceptually, this is the essence of empirical Bayes estimates of the 

randomly varying parameters (intercepts and slopes).

Again, assuming an unconditional random effects ANOVA model, the empirical 

Bayes estimate of the true cluster mean ( β0 j
* ) weights the two potential estimates for 

each cluster as a function of the reliability for that cluster.

 � � � �0 001j j j jY*
.� � �� �   (2.10)

where λj is the reliability of the sample mean, Yj.  (Raudenbush & Bryk, 2002) and γ̂ 00

is the expected value of the intercept (which is the expected value of the outcome 

variable in the unconditional random effects ANOVA model).

The sample mean (Yj. ) is weighted by the reliability for that cluster (λj); the model-

based mean (expected value, γ̂ 00 ) is weighted by 1 minus the reliability (1 − λj). Thus, 

the empirical Bayes estimate of the true cluster mean is a compromise between the 

sample mean and the model-based mean, and the degree to which we trust the sample-

based mean (Yj.
) determines the weight (λj) that we place on the sample-based mean 

(λj Y j. ). Our lack of trust in the sample mean (1 − λj) determines the weight that we 

place on the overall expected value. Thus, the higher the reliability of the estimate 

for cluster j, the more weight is placed on the sample mean (Yj. ) as the estimate of 

the true cluster mean, β0j. In contrast, the lower the reliability of cluster j estimate, 

the more weight is placed on the model-based estimate γ̂ 00  as the estimate of the 
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true cluster mean. In the extremes, if the reliability were 1, the sample mean would 

be the estimate of the true cluster mean. If the reliability were 0, γ̂ 00  would serve as 

the estimate of the true cluster mean. Sometimes the empirical Bayes estimators are 

referred to as shrinkage estimators because the Yj.  estimate is ‘shrunken’ towards the 

model-based estimate; empirical Bayes residuals are like OLS estimates of the residu-

als which are ‘shrunken’ towards 0 (Raudenbush & Bryk, 2002).

Deviance and model fit

Deviance

Using ML to estimate the parameters of the model also provides the likelihood, 

which easily can be transformed into a deviance statistic (Snijders & Bosker, 2012). 

The deviance is −2 multiplied by difference of the log likelihood of the specified 

model and the log likelihood of a saturated model that fits the sample data perfectly. 

Therefore, deviance is actually a measure of the badness of fit of a given model: higher 

deviances are indicative of greater model misfit (Singer & Willett, 2003). Although 

lower deviances indicate better model fit, we cannot interpret deviance in isolation, 

and it is a function of sample size as well as model fit. However, we can interpret 

differences in deviance for competing models as long as the models (a) are hierarchically 

nested, (b) use same observations and (c) use FIML to estimate the parameters (if we 

wish to compare two models that differ in terms of their fixed effects).

Likelihood ratio (deviance difference) test

When one model is a subset of the other, the two models are said to be hierarchi-

cally nested (e.g. Kline, 2015), such that ‘the more complex model includes all of 

the parameters of the simpler model plus one or more additional parameters’ 

(Raudenbush et al., 2004, pp. 80–81). In sufficiently large samples, under standard 

normal theory assumptions and using the same set of observations, the difference 

between the deviances of two hierarchically nested models follows an approximate 

chi-square distribution with degrees of freedom equal to the difference in the number 

of parameters being estimated between the two models (de Leeuw, 2004; Raudenbush 

& Bryk, 2002; Singer & Willett, 2003). Using the likelihood ratio test (LRT), we can 

compare two hierarchically nested models. The simpler model (the model with fewer 

parameters) is the null model (M0); the more parameterised model is the alternative 

model (M1). The deviance of the simpler model (D0) has p0 parameters; the deviance 

of the more parameterised model (D1) has p1 parameters. The simpler model must 

have fewer parameters (p0 < p1), and the deviance of the simpler model must be at 

McCoach, D. Betsy, and Dakota Cintron. Introduction to Modern Modelling Methods, SAGE Publications, Limited, 2022. ProQuest Ebook Central,
         http://ebookcentral.proquest.com/lib/purdue/detail.action?docID=6897209.
Created from purdue on 2023-01-09 14:40:29.

C
op

yr
ig

ht
 ©

 2
02

2.
 S

A
G

E
 P

ub
lic

at
io

ns
, L

im
ite

d.
 A

ll 
rig

ht
s 

re
se

rv
ed

.



INTRODUCTION TO MODERN MODELLING METHODS36

least as large as the deviance of the more parameterised model (D0 ≥ D1). We compare 

the difference in deviance (∆D = D0 − D1) to the critical value of chi-square with 

degrees of freedom equal to the difference in the number of estimated parameters 

(∆p = p1 – p0). Using the LRT, we prefer the more parsimonious model, as long as it 

does not result in (statistically significantly) worse fit. Put another way, if the model 

with the larger number of parameters fails to reduce the deviance by a substantial 

amount, we retain the simpler model (M0). However, when the change in deviance 

(∆D) exceeds the critical value of chi-square with p2 − p1 df (degrees of freedom), then 

the additional parameters result in statistically significantly improved model fit. In 

this scenario, we favour the more-complex model (i.e. Model M1, with p1 df).

Having described the LRT, we must now attend to a few subtle but important details 

about using the LRT to compare two nested models within multilevel modelling.

First, comparing two nested models that differ in their fixed effects (γ) requires 

FIML, not REML. In FIML, the number of reported parameters includes the fixed 

effects (the γ terms) as well as the variance–covariance components. In REML, the 

number of reported parameters includes only the variance and covariance compo-

nents. REML allows for comparison of models that differ in terms of their random 

effects, but both models must have the same fixed effects structure. Therefore, compari-

sons of models with differing fixed and random effects should utilise the deviance 

provided by FIML (Goldstein, 2011; McCoach & Black, 2008; McCoach et al., 2018; 

Snijders & Bosker, 2012). The major advantage of using FIML over REML is the ability 

to compare the deviances of models that differ in terms of their fixed and/or random 

effects. Most statistical programs use REML as the default method of estimation, so 

remember to select FIML estimation to use the deviance estimates to compare two 

nested models with differing fixed effects (McCoach & Black, 2008).

Second, when comparing the fit of two models that differ in terms of their variance 

components, we sometimes encounter a boundary issue that affects the way in which 

we must conduct such model comparisons. Variances cannot be negative. Therefore, 

if the variance of the random effect is 0 in the population, then the estimation of this 

variance component hits a lower boundary (variance = 0). (Similar issues can arise 

when testing correlation coefficients, which are bounded by ±1.00; however, covari-

ance values are generally not bounded is this way.) Given the lower bound of 0, the 

sampling distribution for a variance with a population value of 0 is not normally 

distributed. Instead, it has a median and mode of 0 and is leptokurtic and positively 

skewed. Therefore, for multilevel models with random effects, the standard LRT is too 

conservative (Self & Liang, 1987; Stram & Lee, 1994).

To adjust for this issue, if the model has only one random effect, and therefore only 

one τ, we can use the chi-square value for p = .10 to test for statistical significance 

when we set the Type I error rate (alpha) at .05 (Snijders & Bosker, 2012). The critical 
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value of chi-square with 1 df is 3.841 for p < .05 and 2.706 for p < .10. To compare 

two models that differ in terms of one variance component, we should use the critical 

value of 2.706. In contrast, to compare two models that differ in terms of one fixed 

effect (and no random effects), the critical value is 3.841.

Comparing a model with one random effect to a model with two random effects is 

a bit more complex. The simpler model has two fewer parameters: it eliminates both 

a variance and a covariance. Although the variance has boundary issues (the variance 

cannot be less than 0), the covariance does not. Therefore, the correct critical value 

of χ2 comes from the χ
2

distribution, which is actually a mixture of χ2 distributions 

(Snijders & Bosker, 2012). Technically, the correct critical value of χ2 for a model that 

eliminates one random slope variance (τ11) and one covariance (τ01) is 5.14, rather 

than 5.99, as would normally be the case for a model that differs by two param-

eters (Snijders & Bosker, 2012, p. 99). The rejection regions for LRT that include vari-

ance components are 2.706 for a single variance parameter, 5.14 for a variance and a 

covariance, 7.05 for a variance and two covariances and 8.76 for a variance and three 

covariances (Snijders & Bosker, 2012). Snijders and Bosker (2012) present a more 

detailed discussion of this issue, as well as a table with the correct critical values to 

compare nested models that differ in terms of one or more randomly varying slopes.

Akaike information criterion and Bayesian information criterion

Information criteria such as Akaike information criterion (AIC) and the Bayesian infor-

mation criterion (BIC) also provide a method to compare the fit of competing model. 

There is an advantage to using information criteria for model comparison: they allow 

for comparison of non-nested models. Using AIC and BIC, we can compare competing 

models fit using the same sample, whether or not they are hierarchically nested. 

Lower information criteria (ICs) are indicative of better fitting models; therefore, the 

model with the lowest IC is considered the best fitting model (McCoach & Black, 

2008). For additional details regarding the conceptual and methodological underpin-

nings of the AIC and the BIC, see Bozdogan (1987), Burnham and Anderson (2004), 

Raftery (1995), Schwarz (1978), Wagenmakers and Farrell (2004), Weaklim (2004, 

2016) and Zucchini (2000).

The Akaike information criterion (AIC)

To compute the AIC, simply multiply the number of parameters by 2 and add this 

product to the deviance statistic. The formula for the AIC is

AIC = D + 2p (2.11)
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INTRODUCTION TO MODERN MODELLING METHODS38

where D is the deviance and p = the number of estimated parameters in the model. 

The model with the lowest AIC value is considered the best model.

The deviance (or −2 log likelihood [−2LL]) represents the degree ‘of inaccuracy, 

badness of fit, or bias when the maximum likelihood estimators of the parameters 

of a model are used’ (Bozdogan, 1987, p. 356). The second term, 2p, imposes a pen-

alty based on the complexity of the model. This penalty indicates that the deviance 

must decrease by more than two points per additional parameter to favour the more 

parameterised model.

Compare this to the LRT for model selection. The critical value of χ2 with 1 df 

at α = .05 is 3.84 (or 2.706 for a 1 df change involving a variance). Therefore, when 

comparing two models that differ by 1 df, the LRT imposes a more stringent criterion 

for rejecting the simpler model. In fact, for comparisons of models that differ by 

seven or fewer parameters,i using the LRT results in an equivalent or more parsimoni-

ous model than the AIC. Conversely, when comparing models that differ by more 

than seven parameters, the AIC favours more parsimonious models than the LRT.

The Bayesian information criterion (BIC)

The BIC equals the sum of the deviance and the product of the natural log of the 

sample size and the number of parameters. The formula for the BIC is

BIC = D + ln(n) * p (2.12)

where D is deviance (−2LL), p is the number of parameters estimated in the model 

and n is the sample size. As with the AIC, the model with the lowest BIC is considered 

the best fitting model.

Therefore, the penalty the BIC imposes for each additional parameter is a function 

of the sample size (n). However, in MLM, it is not entirely clear which sample size 

should be used with the BIC: the total number of observations, the number of clus-

ters at the highest level or some weighted average of the two. Furthermore, different 

software packages compute the BIC differently. Some (e.g. SPSS) use the overall sample 

size, whereas others (e.g. SAS PROC MIXED) use the number of clusters (level-2 units). 

Therefore, even when different statistical packages produce identical −2LL and AIC 

values, the BIC value may differ. Hence, the choice of sample size to compute the BIC 

could potentially change the outcome(s) of the model selection process.

Regardless of the choice of sample size for BIC, the per parameter penalty for the 

BIC is higher than the per parameter penalty for the AIC. Generally, multilevel models 

iThe number 7 assumes that we are using the standard critical values for chi-square with α = .05, 
not critical values that have been adjusted for boundary issues in the variances.

McCoach, D. Betsy, and Dakota Cintron. Introduction to Modern Modelling Methods, SAGE Publications, Limited, 2022. ProQuest Ebook Central,
         http://ebookcentral.proquest.com/lib/purdue/detail.action?docID=6897209.
Created from purdue on 2023-01-09 14:40:29.

C
op

yr
ig

ht
 ©

 2
02

2.
 S

A
G

E
 P

ub
lic

at
io

ns
, L

im
ite

d.
 A

ll 
rig

ht
s 

re
se

rv
ed

.
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have at least 10 clusters, and for a sample size of 10, the penalty for the BIC is 2.3 times 

the number of parameters. (In fact, the sample size must be less than eight for the per 

parameter penalty for the BIC to drop below 2.) In contrast, the penalty for the AIC 

is 2 times the number of parameters. Therefore, whenever the AIC favours the simpler 

(less parameterised model), the BIC also favours the simpler (less parameterised) model. 

Whenever the BIC favours the more complex (more parameterised model), the AIC 

also favours the more parameterised model.

Not all software programs provide AIC and BIC measures in their output. However, 

it is easy to compute the AIC and the BIC from the deviance statistic. FIML is the 

most appropriate estimation method to use when computing information criteria 

(Verbeke & Molenberghs, 2000) compare two models that differ in terms of their 

fixed effects.

Using model fit criteria for model selection

Unfortunately, the AIC, BIC and LRT may differ in terms of which model they favour. 

Honestly, the differences in the model fit criteria can be a bit overwhelming, and the 

various criteria do not always favour the same model. Table 2.1 displays the total penalty 

imposed by each of the model fit criteria for models that differ by 1, 2, 3 and 4 param-

eters. For example, imagine that we want to compare two models that differ by one fixed 

effect. Our total sample size is 1000 people, nested within 50 clusters. The deviance 

of the model that includes the parameter is 3.9 points lower than the deviance of the 

model that did not. In such a scenario, the LRT and AIC would favour the model that 

includes the fixed effect parameter; both the BIC2 and the BIC1 would favour the model 

that eliminates the fixed effect parameter. In this situation, two different researchers, 

faced with the same results, might make different decisions about which model to favour.

table 2.1 The total penalty imposed by each of the model fit criteria for models that differ 
by 1, 2, 3 and 4 parameters

1 Parameter 2 Parameters 3 Parameters 4 Parameters

AIC 2  4  6 8

BIC (n = 10) 2.3 4.6 6.9 9.2

LRT (var) 2.7  5.14  7.05  8.76

LRT (trad) 3.84  5.99  7.82  9.49

BIC (n = 50) 3.91  7.82 11.73 15.64

BIC (n = 100) 4.61  9.22 13.83 18.44

BIC (n = 1000) 6.91 13.82 20.73 27.64

BIC (10,000) 9.21 18.42 27.63 36.84

Note. AIC = Akaike information criterion; BIC = Bayesian information criterion; LRT = likelihood ratio test.
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INTRODUCTION TO MODERN MODELLING METHODS40

We suggest some simple heuristics to help navigate the morass of model fit criteria. 

These are meant to provide guidance in using the various model fit criteria; they are not 

meant to supersede them. Because AIC and BIC do not require nested models, we can 

apply this strategy to both nested and non-nested models. Table 2.2 displays the 

per-parameter penalty imposed by each of the model fit criteria for models that differ 

by 1, 2, 3 and 4 parameters. Across all of the model fit criteria, the per-parameter pen-

alty is always at least 2. Therefore, when comparing two models that differ by one or 

more parameters (in terms of the number of parameters estimated by the model), first 

compute the difference in the deviances of the two models. Then divide that num-

ber by the difference in the number of estimated parameters (∆/p). If the ratio of the 

deviance difference to the number of parameters (∆/p) is less than 2, the fit criteria 

favour the more parsimonious (less parameterised) model. This is the simplest sce-

nario, given that all criteria always favour the more parsimonious model when ∆/p is 

less than 2. When this ratio is above 10, we recommend favouring the more parame-

terised model. Again, this is a staightforward decision, as all criteria suggest favouring 

the more complex model (except perhaps the BIC1, but the total sample size needs 

to be almost 25,000 people for the BIC1 to favour the simpler model, and even then, 

all other criteria favour the more parameterised model). In small- to moderate-sized 

samples, we tend to favour the more parameterised model when the ratio is above 4 

because the AIC and LRT always favour the more parameterised model when the ratio 

is above 4. In very large sample sizes, this heuristic may not be appropriate, given that 

deviance is a function of sample size. Therefore, in very large samples, using the BIC1 

may be advisable.

table 2.2 The per-parameter penalty imposed by each of the model fit criteria for models 
that differ by 1, 2, 3 and 4 parameters

1 Parameter 2 Parameters 3 Parameters 4 Parameters

AIC 2 2 2 2

BIC (n = 10) 2.3  2.3 2.3 2.3

LRT (var) 2.7 2.57 2.35 2.19

LRT (trad) 3.84 3 2.61 2.37

BIC (n = 50) 3.91 3.91 3.91 3.91

BIC (n = 100) 4.61 4.61 4.61 4.61

BIC (n = 1000) 6.91 6.91 6.91 6.91

BIC (n = 10,000) 9.21 9.21 9.21 9.21

Note. AIC = Akaike information criterion; BIC = Bayesian information criterion; LRT = likelihood ratio test.

∆/p ratios between 2 and 4 represent the ‘grey zone’, where some model fit criteria 

favour the simpler model and other model fit criteria favour the more parameterised model. 
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multilevel mOdelling 41

When ∆/p is between 2 and 4, compute the various model fit criteria. Then supple-

ment the model fit criteria with Rights and Sterba’s (2019) variance-explained measures 

(discussed in the next section). What proportion of within, between and/or total vari-

ance does this parameter explain? Does removing the parameter substantially reduce 

the predictive ability of the model? Also, given the purpose of the model, decide which 

would be a more grievous error: an error or omission or the inclusion of an unnec-

essary parameter. If omitting a potentially important parameter is more problematic, 

then we recommend favouring the more parameterised model. If including an unneces-

sary parameter is more problematic, then we recommend favouring the simpler model. 

Generally speaking, in the grey zone, we favour retaining potentially important fixed 

effects but eliminating unnecessary random effects (variance components).

If the difference in the number of parameters is 0 (which can happen when com-

paring two non-nested models), then we favour the model with the lower deviance. 

Why? We cannot use the LRT for non-nested models. If two models have the same 

number of parameters, then the model with the lower deviance always has the lower 

AIC, BIC1 and BIC2 (and in fact has the lower IC, regardless of which is IC chosen).

Model selection decisions should consider both the fit and the predictive ability of 

the multilevel model. Next, we turn our attention to quantifying explained variance 

in multilevel models.

Proportion of variance explained

In single-level regression models, an important determinant of the utility of a model 

is the proportion of variance explained by the model, R2. In MLM, computation of the 

proportion of variance explained becomes far more complex. Variance components 

exist at each level of the multilevel model. In addition, in random coefficients models, 

the relation between an independent variable at level 1 and the dependent variable 

varies as a function of the level-2 unit or cluster. Given that variance in the outcome 

variable is decomposed into multiple components, quantifying the variance explained 

by a set of predictors becomes more complicated than in the single-level case.

Conceptually, we could be interested in measuring variance explained within 

clusters, variance explained between clusters and/or total variance explained (both 

within and between clusters). For example, adding a cluster-level (level-2) variable to 

a multilevel model cannot possibly explain within-cluster variance. Similarly, clus-

ter mean centred level-1 (within-cluster) variables cannot explain between-cluster 

variance. However, a cluster-level variable can explain between-cluster variance; and 

because it can explain between-cluster variance, it can also explain some of the total 

variance. Imagine a situation in which 5% of the variance in the outcome variable 

lies between clusters and 95% of the variance lies within clusters. Suppose we find a 
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INTRODUCTION TO MODERN MODELLING METHODS42

variable that explains most (80%) of the between-cluster variance. This variable is a 

powerful predictor of the between-cluster variance, but it only explains 4% (80% * 5%) of 

the total variance. Therefore, deciding how to compute and report variance-explained 

measures in multilevel modelling requires explicit consideration of the context and 

goals of the research.

To this end, Rights and Sterba (2019) developed ‘an integrative framework of R2 

measures for multilevel models with random intercepts and/or slopes based on a 

completely full decomposition of variance’ (p. 309). To use Rights and Sterba’s variance-

explained measures to partition outcome variance into between-cluster outcome 

variance and within-cluster outcome variance, we group mean centre all level-1 pre-

dictor variables and add the aggregate level-1 variables into the level-2 model. (There 

is one exception: if the level-1 variable has only within-cluster variance, and has no 

between-cluster variance, then this is not necessary.) Then we can decompose the 

model-implied total outcome variance into five specific sources of variance: (1) vari-

ance attributable to level-1 predictors via fixed slopes (f1), (2) variance attributable to 

level-2 predictors via fixed slopes (f2), (3) variance attributable to level-1 predictors 

via random slope variation and covariation (v), (4) variance attributable to cluster-

specific outcome means via random intercept variation (m)ii and (5) variance attributable 

to level-1 residuals (σ2) (Rights & Sterba, 2019).

Assuming all level-1 variables have been group mean centred, three of the sources 

contain only within-cluster variance: (1) variance attributable to level-1 predictors 

via fixed slopes (f1), (2) variance attributable to level-1 predictors via random slope 

variation and covariation (v) and (3) variance attributable to level-1 residuals (σ2). 

Therefore, we can evaluate the proportion of within-cluster variance explained by 

level-1 predictors (f1), and we can determine what proportion of within-cluster 

variance is accounted for by the variances and covariances of the randomly varying 

slopes (v) (Rights & Sterba, 2019).

Two of these sources contain only between-cluster variance: (1) variance attrib-

utable to level-2 predictors via fixed slopes (f2) and (2) variance attributable to 

cluster-specific outcome means via random intercept variation (m). Therefore, we 

can determine the proportion of between-cluster variance that is explained by our 

level-2 predictors (f2) and the proportion of between-cluster variance that is random 

intercept variance not explained by the level-2 predictors in our model (m) (Rights & 

Sterba, 2019).

In every model, it is possible to decompose the model-implied total variance into these 

five sources. Then, using Rights and Sterba’s (2019) integrative framework of R2 

measures in multilevel models, researchers can compute a variety of variance-explained 

iiWhen all level-1 variables are cluster mean centred (and the aggregate is included at level-2), m = τ00.
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multilevel mOdelling 43

measures, each of which provides potential insights into the model’s predictive 

capabilities. Rights and Sterba (2019) show the correspondence between their integra-

tive framework and other R2 measures that have been used in MLM. Their integrative 

framework allows for easy computation of previously used variance-explained measures 

without needing to estimate multiple multilevel models. In addition, Shaw et al. (2020) 

developed an R package, r2mlm, that computes all measures in Rights and Sterba’s inte-

grative framework and provides graphical representations of the various measures. In 

Chapter 3, we return to this topic in greater detail, when we describe the process of fitting 

and evaluating multilevel models. There, we provide more details on Rights and Sterba’s 

R2 measures and provide concrete recommendations for using Rights and Sterba’s integra-

tive framework within the model building process.

Effect size

An effect size is a practical, interpretable, quantitative measure of the magnitude of an 

effect. As with any statistical analyses, it is important to report effect size measures for 

multilevel models. The R2 measures described above can help researchers and read-

ers to determine the impact that a variable or a set of variables has on a model, with 

respect to variance explained. In addition, researchers can compute Cohen’s d-type 

effect sizes to describe the mean differences among groups. To calculate the equiva-

lent of Cohen’s d for a group-randomised study (where the treatment variable occurs 

at level 2), use the following formula (Spybrook et al., 2011):

�
�

� �
�

�

ˆ

ˆ ˆ
01

2
00

 (2.13)

Assuming two groups have been coded as 0/1 or −.5/+.5, the numerator of the formula 

represents the difference between the treatment and control groups. The denomina-

tor utilises the σ2 and τ00 from the unconditional model, where the total variance in 

the dependent variable is divided into two components: (1) the between-cluster vari-

ance, τ00, and (2) the within-cluster variance, σ2. There are numerous ways to compute 

effect sizes in MLM (or any analysis), and not all effect sizes need to be standardised, 

especially when unstandardised metrics are commonly used and easily understood. 

We encourage you to present the results of your MLM as clearly as possible and to 

contextualise the parameters in practically meaningful and easily interpretable ways.

Now that we have introduced most of the fundamental concepts in MLM, let’s turn 

our attention to an applied example so that we can provide concrete guidance on 

how to build and interpret multilevel models. Chapter 3 focuses on building, evaluat-

ing and interpreting multilevel models.
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 Chapter Summary

• In a multilevel model without predictors, each person’s score on the dependent 
variable is composed of three elements: (1) the expected mean (γ00), (2) the deviation of 
the cluster mean from the overall mean (u0j) and (3) the deviation of the person’s score 
from his/her cluster mean (rij). In this equation, γ00 is a fixed effect: γ00 is the same for 
everyone. The u0j term is called a random effect for the intercept because u0j randomly 
varies across the level-2 units (clusters).

• In multilevel models, fixed effects are parameters that are fixed to the same value 
across all clusters (or individuals), whereas random effects differ (vary) across clusters (or 
individuals).

• The variance in the outcome variable can be partitioned into within and between-
cluster variance components. The ability to partition variance into within-cluster 
variance and between-cluster variance is one of MLM’s greatest assets.

• Intercepts and slopes can vary across clusters in a multilevel model. We can build a 
regression equation at level 2 to try to explain the variation in these randomly varying 
intercepts and slopes.

• Model selection decisions should consider both the fit and the predictive ability of the 
multilevel model.

• Variance components exist at each level of the multilevel model. In addition, in random 
coefficients models, the relation between an independent variable and the dependent 
variable at level 1 varies as a function of the level-2 unit or cluster.

• Rights and Sterba (2019) developed ‘an integrative framework of R2 measures for MLM 
with random intercepts and/or slopes based on a completely full decomposition of the 
outcome variance’.

Further Reading

Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: Applications and 

data analysis methods (2nd ed.). Sage.

This is a classic book on the theory and use of hierarchical linear modelling and 

multilevel modelling. The book is a must read for researchers interested in diving 

further into the mathematical details of hierarchical linear models (e.g. estimation 

theory and multivariate growth models).

Enders, C. K., & Tofighi, D. (2007). Centering predictor variables in cross-sectional 

multilevel models: A new look at an old issue. Psychological Methods, 12(2), 121–138.

This article provides a detailed overview of grand mean centring and group mean 

centring in the context of two-level multilevel models. In addition to the expansive 

discussion of centring in multilevel models, it provides illustrative examples that 

should provide readers with a foundation to answering questions with their data.
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