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When analyzing count data (such as number of questions answered correctly), 
psychologists often use Poisson regressions. We show through simulations that violating 
the assumptions of a Poisson distribution even slightly can lead to false positive rates 
more than doubling, and illustrate this issue with a study that finds a clearly spurious but 
highly significant connection between seeing the color blue and eating fish candies. In 
additional simulations we test alternative methods for analyzing count-data and show 
that these generally do not suffer from the same inflated false positive rate, nor do they 
result in much higher false negatives in situations where Poisson would be appropriate. 

Researchers often analyze count data, such as number of 
multiple-choice questions answered correctly, the number 
of different uses of a brick, or the number of pins stuck into 
a Voodoo doll. Because these data are integers censored at 
0, researchers will sometimes use Poisson regressions to ex-
amine differences between groups. Poisson regressions test 
for differences in count data; however, they rely on strong 
assumptions about the underlying distribution. In particu-
lar, Poisson regressions assume that the variance of the dis-
tribution is equal to its mean. When the variance is higher 
than the mean (referred to as data being overdispersed), 
the risk of false positives increases. We find a) that data in 
many papers employing Poisson regressions violate these 
assumptions, and b) that even relatively small violations of 
Poisson’s assumptions can dramatically inflate false posi-
tives rates. We demonstrate this issue first in a preregis-
tered study showing that using Poisson regression gives the 
improbable result that blue shirts prime people to eat more 
Swedish Fish. We then report a simulation study that shows 
that under the null, Poisson regressions result in signifi-
cant p-values more often than the 5% of the time which 
it should. Additionally, we demonstrate that alternatives to 
Poisson not only don’t lead to significantly more Type I er-
rors when there is no true difference, they also don’t lead to 
significantly more false negatives when the groups actually 
differ. 

While there are papers in specialized journals discussing 
the risks of using Poisson regressions when its assumptions 
are not met (e.g., Cox et al., 2009), it appears that many 

authors and editors are not aware of these dangers. We 
find evidence that incorrect use of Poisson is widespread. 
A review of the Journal of Personality and Social Psychology 
found 18 papers using Poisson regression to analyze count 
data in the past 10 years; of these 18 papers, 9 appear to 
have used it incorrectly; using Poisson on data in which 
the variance is not equal to the mean.1 Review of two ad-
ditional top Psychology journals and a top Marketing jour-
nal found instances of incorrect use of Poisson in all of 
them. Based on the simulations presented later, data with 
overdispersion equivalent to that found in several of these 
papers can be expected to lead to false positive rates of up 
to 60%. While the absolute number of papers using Pois-
son is not large, we nevertheless believe it is important to 
correct the published literature and do what we can to pre-
vent future publication of false positive results. In addition, 
based on our findings, we also hope that this paper prevents 
authors of meta-analyses from unquestioningly including 
results from Poisson regressions, since, as we will see, these 
results should be questioned and can dramatically affect 
meta-analytical estimates. We worry that Poisson analyses 
may be selected, at least sometimes, precisely because they 
make the result appear more impressive or statistically sig-
nificant. In addition, unlike other, more familiar, forms of 
p-hacking such as conducting multiple tests, pre-registra-
tion does not prevent inflated rates of false positives when 
Poisson regressions are used with overdispersed data. 

It is also important to remember that we were only able 
to review a few of the hundreds of journals in Psychology, 

wryan@berkeley.edu 

To carry out this search we searched for all instances of the string “Poisson” in the relevant journal’s archives from 2008-2018 (journals 
were reviewed in November-December 2018). We additionally reviewed the Journal of Experimental Psychology: General, the Journal of 
Personality and Social Psychology, and the Journal of Consumer Research. These journals were selected because they are among the most 
read and cited journals in Psychology and Marketing respectively. Articles published here are widely read and cited, making incorrect use 
of Poisson here particularly impactful. Papers were included if at least one of their analyses used Poisson regression, and another method 
of analysis was not used as well for the same result. Papers which e.g. reported both Poisson and Negative Binomial regressions on the 
same data are therefore excluded from our search. 
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and there’s little reason to believe that those journals are 
exceptional in their use of Poisson. Further, the rate of Pois-
son use should most appropriately be compared to the 
number of papers that were analyzing count data and thus 
could have used Poisson, not to the total number of papers 
published. While it is difficult to determine the exact num-
ber of papers using count data, we conducted a conservative 
test of the proportion of count data papers which may be 
using Poisson by looking within a specific literature, papers 
using the voodoo doll task.2 Researchers use the voodoo doll 
task to assess aggression by measuring the number of pins 
a participant sticks into a doll representing another person, 
resulting in count data. The paper that introduced this task 
explicitly recommended against using Poisson regressions 
(Dewall et al., 2013). Despite this, of 26 papers featuring the 
voodoo doll task, one fifth of them used only Poisson re-
gressions. Of those which shared sufficient data to evalu-
ate means and variances, we could find only one in which 
Poisson may have been appropriate – in the others its use 
likely inflated the risk of false positives. In short, within the 
literature employing studies using count data as dependent 
variable, a substantial proportion of papers appears to rely 
on Poisson distributions to analyze this data, even in many 
cases where it may yield increased false positives. Future 
work should employ alternative methods of analysis. 

It may not be surprising that so many are unaware of 
the weaknesses of Poisson. Many analytic approaches are 
robust to violations of their assumptions. We are used to 
safely treating Likert scales as continuous data, not running 
Levene’s test for ANOVAs, or using linear regression on in-
teger data. Poisson regression is a stark exception. Authors, 
editors, and reviewers either do not realize the limitations 
of Poisson or they do not realize how dangerous it is to vi-
olate its assumptions. This paper aims to raise awareness 
of this issue by giving a clear and memorable demonstra-
tion of Poisson’s vulnerabilities and offering useful alterna-
tives. Next, we discuss the distributions involved in more 
detail. We begin by explaining why linear regression may 
seem inappropriate for count data, and then explain the 
assumptions of Poisson regressions, Negative Binomial re-
gressions, and permutation tests. Readers who are not in-
terested in a review of these distributions can proceed di-
rectly to the “Experiment” section of the paper. 

Analyses for Count Data and Their Assumptions 

Many scholars in behavioral science analyze their exper-
imental data using linear regressions.3 Linear regression as-
sumes continuous dependent variables which can hold val-
ues below zero. To see how these assumptions might be 
violated with count data, imagine that we are predicting 
the number of croissants eaten per day. A linear regression 

assumes that the values are drawn from a continuous and 
symmetrical distribution around a mean, meaning that this 
model might predict that someone eats 1.87 croissants, or 
even somehow consumes a negative number of croissants. 
Further, linear regression assumes homoskedacity – that 
the error term is similar across values of the independent 
variable, an assumption which count data frequently 
(though not always) violates. In short, count data exhibits 
characteristics that clearly violate assumptions of linear re-
gressions and based on this it may appear that using a linear 
regression to analyze count data may be inappropriate. 
However, even though Poisson regressions do not assume 
the same characteristics of the underlying data as linear re-
gressions, Poisson regressions bring a new set of assump-
tions to the table, assumptions that, as we will see, are often 
violated. Thus, to decide which test to use on count data, we 
need to explore the assumptions of different tests and in-
vestigate the consequences of violating these assumptions. 

Poisson Regressions 

Poisson regression is a form of the generalized linear 
model which accommodates non-normal distributions of 
the dependent variable, and instead assumes that the de-
pendent variable has a Poisson distribution. This distribu-
tion expresses the probability that a given number of events 
will occur in a fixed interval, assuming that these events oc-
cur at a known constant rate on average and that each event 
is independent of the others. For example, Poisson might 
model the number of fish you catch in the Seine after fish-
ing for a given period of time, provided the rate at which 
you catch fish is constant over time. Constant rate processes 
like these naturally have identical means and variances, so 
the distribution has a single parameter, λ, which is equal to 
both its mean and variance. This rigidness can cause prob-
lems when Poisson distributions are fit to data which didn’t 
actually come from a Poisson process, where mean and vari-
ance are often not actually equal. Figure 1 presents exam-
ples of Poisson distributions with varying λ fit to data with 
increasingly high ratios of variance to mean. As the figure 
shows, Poisson distributions fit to these data correspond 
poorly to overdispersed data. When fitting a Poisson distri-
bution to data like this, the λ parameter is equal to the 
mean of the data being fit to, and then both the mean and 
the variance of the Poisson distribution are set equal to λ. 
When the variance is actually higher than the mean, fit-
ted Poisson distributions will have lower variance than the 
actual data. Additionally, as outliers disproportionately af-
fect the mean of the sample, they can strongly affect the 
distribution being imposed. In short, unlike linear regres-
sions, Poisson regressions allow for dependent variables to 
be censored at zero, and allow for non-continuous depen-

The voodoo doll task papers were reviewed in April-June 2019. The voodoo doll task was selected because it is one of the subfields in 
which count data is most widely used. We analyzed all papers citing the paper introducing the voodoo doll task which also used the task, 
and then coded them for if they used Poisson regressions alone to analyze their data or not. 

Linear, negative binomial, and Poisson regression are all versions of the generalized linear model. Readers interested in more detail on 
how these regressions relate to one another can refer to Gardner et al. (1995). 
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Figure 1. Illustrates actual data with increasing variance to mean ratios (bars), as well as the Poisson 
distribution fit to that data (black dots). 

dent variables, but at the same time, they make the strong 
assumption that the variance is equal to the mean. 

Negative Binomial Regression 

Like Poisson regression, Negative Binomial regression is 
another form of the generalized linear model that accom-
modates non-normal distributions of the dependent vari-
able, but it assumes that the dependent variable takes a dif-
ferent form (for further discussion, see Cox et al., 2009). The 
Negative Binomial distribution represents the number of 
successes in a sequence of identical, independent Bernoulli 
trials before a given number of failures occur. For example, 
a Negative Binomial distribution could estimate the number 
of times you can roll a die before seeing a “3” four times. It 
has two parameters: r, the number of failures before stop-
ping, and p, the probability of success in each trial. For our 
purposes, it offers a useful feature: Instead of requiring the 
mean equal the variance, the variance is a quadratic func-
tion of the mean and can differ from it. This allows it to 
more faithfully model data which is overdispersed – that is, 
where the variance is greater than the mean. While it is pos-

sible for data to become so overdispersed that they violate 
the assumptions of the Negative Binomial, there is more 
flexibility than Poisson accommodates. Figure 2 illustrates 
this, by fitting Negative Binomial distributions to the same 
sets of data as in Figure 1. As the figure shows, Negative 
Binomial regressions can better account for the increased 
variance up to a much higher variance to mean ratio, al-
though eventually negative binomial distributions also be-
gin to fit the data poorly if the data has such a high variance 
to mean ratio that it cannot be captured well by the qua-
dratic relationship Negative Binomial assumes. 

Permutation Tests 

Finally, permutation tests are non-parametric, and do 
not impose any distributional assumptions on the data. To 
carry out a simple type of permutation test, we simply re-
peatedly randomly shuffle the data between conditions and 
record the percentage of mean differences that are found 
which are greater than the one actually observed. This per-
centage is essentially a p-value – it tells you how frequently 
a value equal or greater to your observed mean difference 
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Figure 2. Illustrates actual data with increasing variance to mean ratios (bars), as well as the Negative 
Binomial distribution fit to that data (overlaid points). The Negative Binomial distribution generally provides 
a better fit to the data than the Poisson distribution does as variance to mean ratios increase, although with a 
high enough variance to mean ratio it will begin to fit the data more poorly. 

would be found if the null hypothesis was true. Because this 
makes no distributional assumptions about the data, only 
about the randomization process, permutation tests are of-
ten more robust than regressions when the exact distribu-
tion of the data is not known. 

In short, when handling count data, different analyses 
are available, all with specific assumptions about the dis-
tribution of the underlying data, that are likely to be vio-
lated to some degree. To decide which analysis to use, we 
need to know the consequences of violating the specific 
assumptions of these analyses. Frequently Poisson regres-
sions are used, since there are some ways count data corre-
sponds well to its assumptions – data can be censored at 0, 
and can be non-continuous. However, if the ways that count 
data do not meet its assumptions – e.g. that data should 
have a variance equal to the mean – counteracts these ben-
efits, then scholars are erroneously turning to an analysis 
tool that may make their conclusions less rather than more 
reliable. This is what we investigate in our experiment and 
simulations. 

Our experimental analysis and simulations focus on the 
above three regressions: linear, Poisson, and Negative Bi-
nomial, as well as permutation tests, but additional options 
exist. For example, quasi-Poisson regressions adjust sta-
tistical results to accommodate overdispersion. A zero-in-
flated model can accommodate a large number of zero re-
sponses. We discuss these alternate models, as well as 
formal statistical tests for overdispersion which can help 
you determine which model to use, in the Appendix. 

Experiment 

To demonstrate how the improper use of Poisson regres-
sion can lead to misleading results, we set out to test the 
highly implausible theory that seeing a blue shirt might 
prime thoughts of water, thereby affecting their consump-
tion of Swedish Fish gummy candies. We pre-registered op-
posing hypotheses that the color of the experimenter’s shirt 
would either increase or decrease Swedish fish consumption 
(the preregistration can be found at http://aspredicted.org/
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Figure 3. Histogram of the percentage of participants choosing different numbers of fish for both the blue and 
black shirt conditions. Overlaid on this histogram are two Poisson distributions, which are each fit to the 
underlying data. 

blind.php?x=di2sg4). Materials, data, preregistrations, and 
all code for experimental analysis, simulations, and tuto-
rials can be found on our OSF page: https://osf.io/kcgjb/
?view_only=9282cabbc9044bdbbf101cd87e4a6f6e. 

Method 

We approached participants on Sproul Plaza at the Uni-
versity of California, Berkeley (N = 99, 51 females, 46 males, 
Mage = 21.6)4 and asked them to complete a survey for an 
unrelated study. After completing the survey, participants 
chose how many Swedish Fish they would like as compen-
sation for their participation, and learned the experimenter 
would give them whatever number they requested. Our ex-
perimental manipulation varied the color of the experi-
menter’s shirt, which was either black or blue. Our random-
ization procedure had experimenters switch shirts every 15 
minutes. The sample size was based on the requirements of 
the unrelated study, but we believe it reflects common sam-
ple sizes in Psychology. 

Results 

A Poisson regression revealed that participants in the 
blue shirt conditions ate significantly more Swedish fish (M 
= 3.2, SD = 3.1) than participants in the black shirt condi-
tion (M = 2.4, SD = 2.7, p = .016). Unlike the Poisson regres-
sion, alternative methods of analysis do not reveal a signif-
icant difference (p > .17 for ANOVA and Negative Binomial 
regression). 

Why did our Poisson regression reveal significant differ-

ences while the other methods of analysis did not? A crucial 
assumption of Poisson distributions is that the variance is 
equal to its mean. Since variance is the standard deviation 
squared, our data was overdispersed by a factor of about 
three and thus violates the assumption of Poisson distribu-
tions. We show how this can lead to an incorrect fit in Fig-
ure 3, which shows histograms of the number of fish taken 
with the Poisson distributions fit to the data overlaid. This 
graph makes it evident that the Poisson distributions don’t 
appear to fit the data well – for example, they predict that 
fewer people will choose to take zero fish, and that more 
will prefer the mean number of fish, than we observe in the 
data. The Poisson regression also artificially constrains the 
variance, making the two distributions appear more differ-
ent than they actually are. 

Figure 4 shows the same histogram, but this time with 
Negative Binomial distributions fit to the data instead. As 
the figure makes clear, Negative Binomial regression better 
captures some aspects of the data, such as the larger per-
centage of people choosing zero fish, and the increased 
variance of the data, with some participants choosing large 
numbers of fish. 

We can extend this observation: if overdispersion is what 
caused t-shirt color to apparently affect Swedish fish con-
sumption, increasing the variance-to-mean ratio of our 
data even more should lead to even “stronger” effects. In 
general, multiplying all values by a constant will increase 
the variance to mean ratio. For example, we might have 
measured the amounts of rewards taken in grams (5/fish) or 
in Calories (8/fish) – seemingly inconsequential measure-

Due to experimenter error, for 4 participants data on condition or fish taken was not recorded, and were necessarily excluded from analy-
sis. For 2 additional participants where condition and fish taken was recorded, age was not, and these participants were not excluded. 
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Figure 4. Histogram of participants choosing different numbers of fish for the black and blue shirt conditions. 
Overlaid on this histogram are two Negative Binomial distributions fit to the underlying data. 

ment changes which we will find actually have consequen-
tial effects.5 The resulting means and variances for each of 
these counterfactual rewards, as well as the p-values of the 
resulting Poisson, Negative Binomial, and Linear Regres-
sions, as well as permutation tests, appear in Table 1. As 
expected, this switch leads to even more significant results 
when analyzing the data using Poisson regression. Switch-
ing from single fish to grams results in p < 10-7, switching to 
Calories in p < 10-11. As before, the results were not statis-
tically significant when we repeated this analysis with OLS 
regression, Negative Binomial regression, or a permutation 
test6 of the difference between conditions.7 In short, by ar-
bitrarily changing the expression of the data, without ac-
tually changing the actual distribution of the data between 
conditions, our two conditions appeared to become more 
significantly different from each other. 

Discussion 

Our results demonstrate the potential for Poisson regres-
sion to exaggerate the statistical significance of small dif-
ferences in a study testing an implausible hypothesis. In ad-
dition, changing the unit of analysis from fish to grams to 
calories affected the degree to which our statistical analy-
sis claimed our two groups to differ. For this illustration we 
opted to look at the role of overdispersion by simply multi-

plying our data to investigate the effects of giving out fish 
in units of five or ten, but in practice researchers face many 
decisions that may all increase overdispersion such as the 
number of multiple-choice questions to include in an ex-
periment, or how to score them. We next turn to simula-
tions to assess the degree to which violations of the as-
sumptions of the Poisson distribution increase the risk of 
false positives, examining the role of overdispersion more 
comprehensively. We find that even minor violations result 
in unacceptable increases in false positives. Further, we 
show that alternatives such as negative binomial or linear 
regression yield fewer false positives. 

Simulated Data 

We generated count data randomly drawn from a Poisson 
distribution. We then modified the simulated data in ways 
that result in data which violates the assumptions of Pois-
son (e.g., making each answer count for three points instead 
of one, or increasing the range of a response scale from 
seven to 100), and show that it increases the false positive 
rate. These simulations employ a method known as permu-
tation testing. Essentially, we randomly sample two groups 
of data points from a Poisson distribution, and then trans-
form the data to give ever-greater violations of Poisson’s as-
sumptions. We then use Poisson regressions to test whether 

Although these are no longer technically count data, they still share its critical features: they are integers censored at zero, and thus vio-
late the assumptions of linear regression just as count data does. 

We carried out our permutation test by analyzing participants as though they had been randomly assigned to a group (keeping the overall 
size of the groups the same) and calculating the difference in means under this random assignment. We repeated this 10,000 times, and 
then found the percentage of the time that a difference in means greater than that observed in the data was generated by this random 
shuffling. This percentage was effectively our p-value. 

When individuals 2 standard deviations or more from the mean excluded (N=4), no analysis is significant initially, though the Poisson re-
gression still gives the lowest p value (p = .17). When grams or Calories are used, the Poisson regression gives a significant result, while 
no other analysis does except for a Negative Binomial regression using a DV of Calories. 
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Table 1. Results of Study 1 with Varying Dependent Variable Units of Measurement 

Blue shirt 
condition 

Black shirt 
condition p-values 

 

Unit M Var M Var 

Poisson 
regression 

Negative 
Binomial 

regression 

Linear 
regression 

Permutation 
test 

Fish 3.2 3.1 2.4 2.7 p = .02 p = .20 p= .17 p = .17 

Grams 
(5/fish) 

15.9 236.2 11.8 187.3 p < .001 p = .32 p = .17 p = .17 

Calories 
(8/fish)  

25.4 604.7 18.9 479.4 p < .001 p = .35 p = .17 p = .17 

the two groups are statistically different from each other. 
We repeat this process many times, and then record the per-
centage of the time that the Poisson regression returns a 
p-value less than .05, indicating statistical significance. 

Type I Error Simulations 

Our permutation tests examining false positive rates 
sample both groups of data points from an identical distri-
bution.8 Since in this case there is no real difference in the 
underlying distribution of the two groups, Poisson regres-
sions should result in p-values < .05 in only 5% of the simu-
lations (a 5% false positive rate). 

Besides a Poisson regression, we also used a Negative 
Binomial, a non-parametric permutation test, and a linear 
regression9 on the same data so we can compare the false 
positive rates. We repeated this process 10,000 times for 
each distribution, to determine how frequently each test re-
turned a p-value below .05. Because the datasets were all 
drawn from the same underlying distribution, we should ex-
pect any properly functioning statistical test to reject the 
null hypothesis (i.e., find a p-value <.05) only 5% of the 
time. Results of these simulations are plotted in Figure 5. 
Provided the underlying data are truly Poisson-distributed 
with a variance to mean ratio of 1, all four tests do equally 
well with a false-positive rate of 5%. However, when we in-
creased the variance to mean ratio of the underlying data, 
Poisson distributions resulted in significant p-values (i.e., 
false positives) more often, over 50% of the time for vari-
ance to mean ratios 10 and above. Despite being more ro-
bust to slight overdispersion, negative binomial regression 
also yields increased false positive ratios at high variance to 
mean ratios. 

Count data may be overdispersed naturally. However, 
there are also many ways that the choices made in research 
design and analysis affect variance to mean ratios. For ex-
ample, changing the units data is measured in as in the 
Swedish Fish study, adding additional easy questions which 
everyone will get correct, changing the number of options 

on a response scale, and more can all change the variance to 
mean ratio. The wide variety of data and task design choices 
which can lead to violations of the assumptions of Poisson 
make it critical to always be aware of the danger of overdis-
persion. 

Type II Error Simulations 

We address the risk of false negatives in our next set of 
simulations. We again ran a permutation simulation, but in 
this case we simulated data from two Poisson distributions 
that are different (varying the degree of difference plotted 
on the x-axis in Figure 6), using 1,000 iterations. When the 
assumptions of the Poisson are met, Poisson regressions 
have a rate of Type II errors that is functionally identical 
to the three alternative methods. We show additional simu-
lations with varying sample sizes in the online experiment 
code, but results remain similar. In other words, while Pois-
son regressions (compared to alternative methods) may in-
crease the risk of false positives, not using Poisson regres-
sions does not appear to increase the chance of getting false 
negatives. 

Because the violation of Poisson assumptions increases 
the likelihood that Poisson analyses will find significant dif-
ferences, Negative Binomial regressions, permutation tests, 
and t-tests will lead to higher rates of false negatives when 
Poisson’s assumptions are violated. However, while Poisson 
regressions do give fewer false negatives when the assump-
tions are violated, this is because they are generating more 
false positives in general. For an extreme example of why 
more false positives means fewer false negatives, consider a 
hypothetical statistical test which assumed that 100% of re-
lationships were significant. This test would never generate 
false negatives, but it would be at the cost of a 100% false 
positive rate when in reality there are no differences. Given 
the harmful consequences of false positives (Pashler & Har-
ris, 2012), we don’t believe this is a valid reason to use Pois-
son distributions when the data violate the assumptions. 

For all the graphs shown here a Poisson distribution with a λ=1 was used, but testing with λ ranging from 1-10 shows no difference in 
results 

This is equivalent to a t-test in this case 

8 

9 

Poisson Regressions: A Little Fishy

Collabra: Psychology 7

D
ow

nloaded from
 http://online.ucpress.edu/collabra/article-pdf/7/1/27242/480673/collabra_2021_7_1_27242.pdf by guest on 07 M

arch 2023



Figure 5. Simulation results plotting the proportion of significant results when in reality there is no difference 
between the two groups, using a simulated sample size of 100 per cell. 

Figure 6. Simulation results showing the proportion of non-significant results when in reality the two groups 
differ, as a function of the size of the difference (Cohen’s d) and conditions of the Poisson regression are met, 
using a simulated sample size of 100 per cell. 

General Discussion 

In one experiment and a set of simulations, we find that 
the use of Poisson regressions can inflate the risks of false 
positives. Poisson regressions are only appropriate when 
the data comply with a restrictive set of assumptions. Vi-

olating these assumptions can substantially increase the 
risk of false-positive statistical results, as we show. These 
false-positive results are likely to have low p-values, which 
can bias some types of meta-analyses. For example, p-curve 
analyses will be thrown off by the addition of low p-values, 
and may exaggerate evidentiary strength (Simonsohn et al., 
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2014). Other meta-analyses may be skewed by inflated ef-
fect size estimates (Vosgerau et al., 2019). 

Taken as a whole, our results suggest that Poisson results 
are often fishy. Unless the assumptions of Poisson regres-
sion are fully satisfied, it should be avoided. Fortunately, 
linear regressions and permutation tests offer good alter-
natives to Poisson regression. Negative Binomial regres-
sions are more broadly useful than Poisson regressions but 
can also yield false positives when variance to mean ratios 
become very high. In particular, linear regressions are ro-
bust to violations of their assumptions, and permutation 
tests are robust by virtue of not making assumptions about 
the distribution of the data to begin with. Appendix I pro-
vides additional data on distributions, tests for determining 
if data are overdispersed, carrying out alternative analyses, 
and links to further resources for using alternative methods. 
Tutorial code carrying out these analyses can be found at 
the paper’s OSF page: https://osf.io/kcgjb/?view_only=9282
cabbc9044bdbbf101cd87e4a6f6e. A simple initial test for 
overdispersion is to compare the mean of the data with its 
variance (the standard deviation squared) – if the variance 
is greater than the mean, overdispersion may render Pois-
son inappropriate.10 When interpreting papers presenting 
Poisson analyses of count data, there is no simple heuristic 
to adjust their results, and it is likely better to omit papers 
using Poisson from meta-analyses lest they skew results. 
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Even if this ratio is only slightly positive, this should be cause for concern and the use of either an alternative to Poisson or the tests for 
overdispersion given in the Appendix code 
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Online Appendix I: Additional Information on 
Regressions and Statistical Tests 

This appendix provides additional information on alter-
native regressions for count data, methods for testing for 
overdispersion, a discussion of how to choose between 
methods, and references to further resources. Example R 
code which runs the analyses and tests discussed here can 
be found in the Code > Appendix Tutorial Code section of 
this paper’s OSF page: https://osf.io/kcgjb/?view_only=9282
cabbc9044bdbbf101cd87e4a6f6e. 

Quasi-Poisson Regression 

Unlike Negative Binomial regressions, which use a dif-
ferent statistical distribution which may better fit the data, 
a quasi-Poisson regression still assumes the Poisson distri-
bution, but adjusts the inferential statistics arising from it 
to help account for overdispersion. This adjustment adds a 
scale parameter which allows variance to be a linear func-
tion of the mean, meaning that the two do not have to be 
equal, unlike in the Poisson regression, where the ratio is 
assumed to be 1 to 1. Standard errors and test statistics are 
then corrected based on this parameter. 

Zero-Inflated Models 

Poisson regressions tend to assume that a very small per-
centage of all values are zeroes. However, in practice it is of-
ten the case that there will be more zero values in the data 
than you expect. For example, in our experiment looking at 
the number of Swedish Fish chosen by participants, a sig-
nificant number of participants were not interested in re-
ceiving any Swedish Fish at all. In order to account for this, 
we model the data generating process in two stages: first, 
a new first step which determines if a value will be zero or 
not, and then a step in which we determine what each value 
is conditional on it not being zero. This correction is often 
accomplished by first using a logistic regression to predict if 
values will be zero, and then using a Poisson regression to 
predict the values of non-zero values. However, this is re-
ally a more general procedure – the same logic can apply 
to other regression models. For example, it would be possi-
ble to use some other regression to determine if a value is 
zero or not, such as probit, or a different regression for de-
termining values conditional on them not being zero, such 
as a Negative Binomial regression. This may be necessary if 
zero-inflation isn’t the only way that the data violated the 
assumptions of a Poisson regression – for example, even af-
ter accounting for the larger number of zeroes in the data, 
the data could nevertheless still be overdispersed. One im-
plementation of zero-inflated models can be found in the R 
package pscl (Jackman, 2020). 

Tests of Overdispersion 

There are a number of ways to test if the assumptions of 
the Poisson distribution hold. R code on this paper’s OSF 
page demonstrates different tests of over- and under-dis-
persion. A simple initial heuristic test is to compare the 
mean and variance of the data to one another and do a sim-
ple comparison. If the variance is higher than the mean, 

overdispersion is likely, and may be damaging. Another 
simple method is to fit a Poisson model to the data, and 
check if residual deviance is greater than residual degrees 
of freedom. A common rule of thumb is that if the ratio 
of residual deviance divided by residual degrees of freedom 
is greater than two, overdispersion may be present. If this 
is the case, this may indicate overdispersion, although this 
test can be misleading. However, there are also more formal 
statistical tests which can be carried out which will provide 
a more robust test. 

One option is using a parametric, regression-based test 
for overdispersion (Cameron & Trivedi, 1990, see also 
Cameron & Trivedi, 2001, 2005). What this essentially does 
is test the hypothesis that the assumption that mean is 
equal to variance holds in the data against an alternative 
hypothesis that the variance is actually better described by 
a function which allows variance to vary from the mean. If 
the null hypothesis (that mean is equal to variance) is re-
jected, this signals that there may be under or overdisper-
son. It can also use an OLS regression to estimate the de-
gree of under- or overdispersion. This is implemented in 
the aer package in R through the function dispersiontest 
(Kleiber & Zeileis, 2008). 

Another option is examining the residuals of a fitted 
Poisson regression model, and from these determining if 
over- or under-dispersion is present using a non-parametric 
test. One implementation comes from the DHARMa pack-
age in R, using the simulateResiduals and testDispersion 
functions as demonstrated in the attached R code (Hartig, 
2016). 

Deciding which Model to Use 

It is not possible to give a complete guide to when to use 
each type of regression. If you know there is some overdis-
persion, an OLS regression or non-parametric permutation 
test may be sufficient, and probably always makes sense as 
a robustness check. However, if you want to have some-
thing which may more closely follow the distribution, then 
you should probably switch to using quasi-Poisson or Neg-
ative Binomial. Which of those two to use is tricky to deter-
mine, but there are reasons to choose either. It is not always 
obvious which of the two methods – Negative Binomial or 
quasi-Poisson – will provide the best fit to the data. Be-
cause quasi-Poisson is technically an adjustment to infer-
ential statistics, not a distribution of its own, it is difficult to 
compare it with Negative Binomial using likelihood-based 
measures of model fit. For a useful discussion of how the 
different weighting parameters in Negative Binomial and 
Quasi-Poisson models can be more (or less) appropriate for 
data as well as an example, see Ver Hoef & Boveng (2007). 

Online Appendix II: Distributions of Variance to 
Mean Ratios in Practice 

One may ask what the practical significance of the sim-
ulations results are – after all, it is possible that high vari-
ance to mean ratios are rarely observed in the papers which 
do use Poisson. To answer this question, we looked at the 
variance to mean ratios observed in the papers we reviewed 
for their use of Poisson. Appendix Figure 1 recreates Figure 
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Appendix Figure 1. Simulation results plotting the proportion of significant results when in reality there is no 
difference between the two groups, using a simulated sample size of 100 per cell. Overlaid on the x-axis as red 
X’s which represent the observed variance to mean ratios of studies in papers using Poisson regression to 
analyze the Voodoo Doll task. 

5 from the main paper, but plots along the horizontal axis 
as red X’s the variance to mean ratios above one observed in 
papers using Poisson to analyze Voodoo Doll task data. The 
variance to mean ratios span the full length of the axis, pro-
viding suggestive evidence that high variance to mean ra-
tios, and the false positive rates which come with them, may 
be relatively common in practice. 
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