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Statistical Inference

We’re interested in making inferences about unknown population parameters θ

given a (probability) model of the data (y).

𝑦𝑖~𝑝 𝑦𝑖 𝜽)
How is the data distributed? 

Question of Interest: What is the population mean 𝜇? Or standard deviation 𝜎?  

Classical Inference:

Unknown parameters θ are considered to be fixed values

• Point estimation: what is the single “best estimate” for θ? 

Start with our model of the data:

• Normal: 𝑦𝑖~Normal(𝜇, 𝜎2)
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Likelihood: How likely was it to observe my data based on a specific parameter 

set (ex: mean of 30, standard deviation of 10)? 

Maximum Likelihood Estimate (MLE):

መ𝜃𝑀𝐿𝐸 = argmax𝜃(Pr 𝒚 𝜽 )

Probability of observing one data point 

(normal distributed)

Joint probability of observing your data

What if we choose the value of θ which makes observing our data most likely?

• For a normal model:

• The MLE for the mean is the sample mean 
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Great! We have our best estimate 𝜃𝑀𝐿𝐸

But our data was only obtained from random sample from the population.

How does our point estimate 𝜃𝑀𝐿𝐸 vary across random samples (uncertainty)? 

• Sampling distributions of our statistic

• Requires asymptotic assumptions like central limit theorem (e.g., as our sample size increases…)

“As we repeat this procedure over the long run, we expect the true (fixed) parameter value to be 

captured by the confidence interval 95% of the time.”

All of these stem from our initial consideration of 𝜽 to be fixed

• Confidence Intervals:
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Bayesian Inference

Unknown parameters θ are considered as random variables (vary and have a distribution)

What if we consider our parameters θ can vary? 

We’re interested in the posterior distribution of θ: 𝑝 𝜽 𝒚)

• Ex: “Given our observed data, what does the distribution of our population mean look like?”

The posterior distribution is very useful:

• Tells us where the most likely parameter values are located

• Tells us how uncertain we are about what values the parameters could take 

𝜃|𝑦

𝑝(𝜃|𝑦)
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How do we calculate the posterior distribution?

We use Bayes Rule:

𝑝 𝜽 𝒚 =
𝑝 𝒚 𝜽 ∗ 𝑝(𝜽)

𝑝(𝒚)
Posterior Distribution

Data Likelihood Prior Distribution

Before seeing any data, what were your 

assumptions on how 𝜃 is distributed?

Marginal Likelihood of Data  (Evidence)

Quantifies agreement between data and prior (*more on this when I talk about Bayes Factors)

𝑝 𝑦 = න𝑝 𝑦 𝜃 ∗ 𝑝 𝜃 𝑑𝜃 = Some Constant Number (since 𝜃 is the only thing that varies)
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Bayes Rule:

Often rewritten to:

𝑝 𝜽 𝒚 =
𝑝 𝒚 𝜽 ∗ 𝑝(𝜽)

𝑝(𝒚)

𝑝 𝜽 𝒚 ∝ 𝑝 𝒚 𝜽 ∗ 𝑝(𝜽)

Posterior distribution is proportional to data likelihood multiplied by the prior
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Example: Coin-Tossing Experiment

You’re suspicious about this coin your friend pulled out:

Is this a weighted coin? What is the probability of 

Heads (Yes)?

Binomial Data Likelihood:

Let 𝜽 = 𝐩𝐫𝐨𝐛𝐚𝐛𝐢𝐥𝐢𝐭𝐲 𝐨𝐟 𝐡𝐞𝐚𝐝𝐬

Let 𝒏 = 𝟓 (we will flip the coin 5 times and observe the results)

𝑝 𝒚 𝜽

𝑝 𝒚 𝜽 = 0.5

𝑝 𝜽 𝒚 ∝ 𝑝 𝒚 𝜽 ∗ 𝑝(𝜽)
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Example: Coin-Tossing Experiment

Hint: Beta distribution nicely combines (i.e., is a conjugate prior) with the binomial likelihood 

𝑝 𝜽 𝒚 ∝ 𝑝 𝒚 𝜽 ∗ 𝑝(𝜽)

Prior Distribution: 𝑝(𝜽) Choice is up to you! 

Here is where you can incorporate in your prior beliefs about the coin

1) My friend would never cheat 

me, the coin is unbiased

2) I think the coin is 

unbiased, but I’m open to 

other possibilities

3) I will refrain from making 

assumptions; anything is possible
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Example: Coin-Tossing Experiment 𝑝 𝜽 𝒚 ∝ 𝑝 𝒚 𝜽 ∗ 𝑝(𝜽)

Experiment: toss the coin 5 times:

Results: 4 yes; 1 no

𝑝 𝒚 = 𝟒 𝐲𝐞𝐬 𝐨𝐮𝐭 𝐨𝐟 𝟓 𝜽

θ

MLE

= 0.8

The maximum likelihood estimate is as we expect,

80% chance for “Yes/Heads”.

• However, other probabilities for heads seem likely 

as well 

𝑝 𝜽 𝒚 ∝ 𝑝 𝒚 𝜽 ∗ 𝑝(𝜽)
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Example: Coin-Tossing Experiment 𝑝 𝜽 𝒚 ∝ 𝑝 𝒚 𝜽 ∗ 𝑝(𝜽)

1) Prior: very convinced 𝜃=0.5 2) Prior: loosely 

convinced 𝜃=0.5

3) Prior: uniform; all values 

equally likely
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Example: Coin-Tossing Experiment 𝑝 𝜽 𝒚 ∝ 𝑝 𝒚 𝜽 ∗ 𝑝(𝜽)

Now that we have the posterior distribution, we have all the information we want!

Ex: we can calculate credible intervals:

What interval contains 95% of the possible parameter 

values?

[0.359, 0.957]

Based on the observed data, there is a 95% probability that 

the true probability of heads lies between 0.359 and 0.957.

Note: credible intervals are direct probability statements!
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Example: Coin-Tossing Experiment 𝑝 𝜽 𝒚 ∝ 𝑝 𝒚 𝜽 ∗ 𝑝(𝜽)

Ex: we can calculate posterior predictive samples:

Generate sample data, accounting for the fact that there is variability in the estimated 

probability of heads 

Overall, the light blue (Bayesian 

posterior predictive samples) 

show more variability because 

the classical predictive samples 

assume that the probability of 

heads is fixed (at the MLE value 

of 0.8) whereas the Bayesian 

version does not.
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Principles for Choosing Priors: The tricky part is you have to choose

1) My friend would never cheat 

me, the coin is unbiased

2) I think the coin is 

unbiased, but I’m open to 

other possibilities

3) I will refrain from making 

assumptions; anything is possible

1) and 2) are called informative priors. They build in prior information you have, which will affect 

the posterior

3) Is a non-informative prior (in this case, the uniform distribution). This is when you don’t want to 

bias the posterior estimates

For this reason in experimental work, we usually default to non-informative priors unless you 

have past information you want to incorporate. 

Fun Fact: In the context of regression, LASSO and Ridge regression are equivalent to using informative priors centered around 0



15

Bayes Factors: Model Comparisons, Hypothesis Testing

𝑝 𝜽 𝒚 =
𝑝 𝒚 𝜽 ∗ 𝑝(𝜽)

𝑝(𝒚)

𝑝 𝑦 = න𝑝 𝑦 𝜃 ∗ 𝑝 𝜃 𝑑𝜃

Marginal Likelihood

• Compute 𝑝 𝑦 given different models (or priors):

𝑝 𝜃 𝑦,𝑀 =
𝑝 𝑦 𝜃,𝑀 ∗ 𝑝(𝜃|𝑀)

𝑝(𝑦|𝑀)

𝒑 𝑴𝟏 𝒚 =
𝑝 𝑦 𝑀1 ∗ 𝑝(𝑀1)

𝑝(𝑦)

𝒑 𝑴𝟐 𝒚 =
𝑝 𝑦 𝑀2 ∗ 𝑝(𝑀2)

𝑝(𝑦)

p M1 y

p(M2|y)
=
p y M1

p y M2)
∗
p M1

p(M2)

Bayes Factor
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Bayes Factors:

p M1 y

p(M2|y)
=
p y M1

p y M2)
∗
p M1

p(M2)

• Odds Ratio of Posterior Probabilities: how likely model 1 is compared to model 2 given the data

• Ratio of Prior Probabilities: how much did we believe in model 1 compared to model 2 prior to 

the data

• Ratio of Marginal Likelihoods: Bayes Factor

• After getting the data, how much should I change or update my prior belief 

Bayes Factors > 1 would indicate evidence towards Model 1

Bayes Factors < 1 would indicate evidence towards Model 2

The paper we read put H0 as model 1 and H1 as model 2, so BF > 1 would be evidence for Null
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Summary: Pros vs. Cons

Pros:

• Bayesian inference allows you to make direct probability statements for things that you 

are interested in

• It allows you to incorporate prior information you have in a formal way (via the prior 

distribution)

• Don’t need sampling distributions and those assumptions (ex: the large sample 

assumptions for CLT) since the posterior distribution incorporates the variability in the 

parameter 𝜽

Cons:

• Need to specify priors (which may be a pro or a con); Could be dangerous with small sample sizes

• However, for large samples, the posterior distribution will be dominated by the data 

likelihood, so prior specification is less important

• Using non-informative priors will pretty much get you similar results to classical analyses

• COMPUTATION: Computing posterior estimates because very computationally intensive especially 

for complicated models where you need to use Markov-Chain Monte-Carlo algorithms (e.g., 

Metropolis-Hastings, Gibbs Sampler, etc.) to get posterior estimates
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