POLYTOMOUS MODELS: MULTINOMIAL REGRESSION

Henna Vartiainen

February 27th, 2023

OUTLINE/KEY CONCEPTS

- Basics
- Assumptions
- Different types
 - Stratified
 - Multinomial logistic regression
 - Reference category
- Model simplification
- Questions

BASICS: MULTINOMIAL MODELS

- Your dependent variable is **categorical/nominal** with at least 3 levels
 - DV is not ordered or ranked
- You want to use a variable/variables to **predict** another variable
- At least one of your predictor variables is not continuous

EXAMPLE

- Henna opens an ice cream kiosk that sells 4 kinds of ice cream
- She wants to find out which variables can predict which ice cream they will buy

EXAMPLE

- Henna opens an ice cream kiosk that sells 4 kinds of ice cream
- She wants to find out which variables can predict which ice cream they will buy
- Predictors: Age, Gender, Hair color, Height (cm), Weight (kg), Annual income (\$)
- DV: type of ice cream purchased
 - Rum raisin (A), Vanilla (B), Chocolate (C), Strawberry (D)

ASSUMPTIONS

- No outliers
- Independence of observations
- No multicollinearity

ASSUMPTIONS

- No outliers
- Independence of observations
- No multicollinearity

• Does not assume normality or homoscedasticity!

- Looks at each DV choice and treats it as an independent binomial logistic regression model
- You only wish to make inferences about the choice of specific categories
- Keeps one category as-is, groups the rest of them together

- Looks at each DV choice and treats it as an independent binomial logistic regression model
- You only wish to make inferences about the choice of specific categories
- Keeps one category as-is, groups the rest of them together
 - Why would anyone buy rum raisin ice cream over the other options?
 - A vs [B, C, D]
 - Rum raisin vs [vanilla, chocolate, strawberry]

Coefficient	Estimate	Std error	Z-value	P-value
(Intercept)				
Age	0.239814			.001
GenderFemale	-2.32432			.000
HairBlonde				.999
Height				.998
Weight				.996
Income				.064

- 1. Coefficient represents the increase in log odds of choosing rum raisin associated with each unit increase
- 2. Coefficients can be converted from log odds to odds ratio by applying the exponent function
- 3. Odds ratio > 1 = increase per unit; Odds ratio < 1 = decrease per unit

Coefficient	Estimate	Std error	Z-value	P-value
(Intercept)				
Age	0.239814			.001
GenderFemale	-2.32432			.000
HairBlonde				.999
Height				.998
Weight				.996
Income				.064

- I. Age Exp(0.239814) = 1.2710127
- 2. All else being equal, every additional year of age is associated with a 27% increase in the odds of choosing rum raisin over the other ice cream options
- 3. GenderFemale Exp(-2.32432) = 0.09784996
- 4. All else being equal, being female reduces the odds of selecting rum raisin by 90 %

OPTION 2: MULTINOMIAL LOGISTIC REGRESSION MODEL

- A series of binomial models comparing the reference category to each of the other categories
- Runs a generalized linear model on the log-odds of each category versus the reference category
 - Reference category = Rum raisin (A)
 - [A vs B], [A vs C], [A vs D]
 - [Rum raisin vs Vanilla], [Rum raisin vs Chocolate], [Rum raisin vs Strawberry]

CHANGING THE REFERENCE

- What if you want to look at other categories?
 - E.g. What are the odds ratios of Vanilla (B) relative to Chocolate (C)?
- Two options
 - 1. Change the reference category and rerun your analyses!
 - 2. Calculate the difference between the coefficients of B and C against A

MODEL SIMPLIFICATION

- Gradual process of elimination of variables
 - Ensures that significant variables that confound each other are not accidentally removed
- 1. Remove the variable with the least significant p-value
- 2. Run the model without the model without the variable
- Check the coefficients;
 They should not change by more than 20-25%
- 4. Stop when all non-significant variables have been tested

QUESTIONS

- With both types of models, you have to run multiple significance tests
 - Controlling for Type I error?
- Assumptions some sources say that linearity is required, some do not
- Longitudinal options?